Fiche de cours

Variations et extrémums d'une fonction- Terminale- Mathématiques

Lycée   >   Terminale techno   >   Mathématiques   >   Variations et extrémums d'une fonction- Terminale- Mathématiques

  • Fiche de cours
  • Quiz et exercices
  • Vidéos et podcasts
Objectif
  • Dresser le tableau de variation d’une fonction à partir de sa courbe représentative.
  • Déterminer graphiquement les extrémums d’une fonction sur un intervalle.
  • Déterminer les variations et les extremums d'une fonction grâce au signe de sa dérivée.
Points clés
  • est croissante sur un intervalle signifie que pour tout et de , si , alors .
  • est décroissante sur un intervalle signifie que pour tout et de , si , alors .
  • est constante sur un intervalle signifie que pour tout et de , on a .
  • Pour résumer les variations d’une fonction sur son domaine de définition, on dresse un tableau de variation. Une flèche montante indique la croissance et une flèche descendante indique la décroissance.
  • Le maximum de sur est la plus grande valeur de f(x) pour appartenant à . On a alors pour tout de , .
  • Le minimum de sur est la plus petite valeur de f(x) pour appartenant à . On a alors pour tout de , .
  • Un extrémum est un maximum ou un minimum.
  • Soit f une fonction définie et dérivable sur un intervalle I, on note f ' sa fonction dérivée.
    • Si pour tout x appartenant à I, f '(x) ≥ 0, alors f est croissante sur I.
    • Si pour tout x appartenant à I, f '(x) ≤ 0, alors f est décroissante sur I.
    • Lorsque f possède un extremum en a, alors f ' (a) = 0.
Pour bien comprendre
  • Ensemble de définition d’une fonction
  • Courbe représentative d’une fonction 
1. Sens de variation d'une fonction
a. Défintions

Soit un intervalle et une fonction définie sur .

est croissante sur un intervalle signifie que pour tout et de , si , alors .
Exemple
La fonction représentée ci-dessous est strictement croissante sur l’intervalle .

est décroissante sur un intervalle signifie que pour tout et de , si , alors .
Exemple
La fonction représentée ci-dessous est strictement décroissante sur l’intervalle .

Remarque
De manière générale, on dit qu’une fonction est monotone sur un intervalle lorsqu’elle est croissante ou décroissante sur l’intervalle .
est constante sur un intervalle signifie que pour tout et de , on a .
Exemple
La fonction représentée ci-dessous est constante sur l’intervalle .

b. Tableau de variation

Pour résumer les variations d’une fonction sur son domaine de définition, on dresse un tableau de variation.

Une flèche montante indique la croissance et une flèche descendante indique la décroissance.
Exemple
Voici la représentation graphique d’une fonction définie sur l’intervalle , elle est décroissante sur et croissante sur . De plus, la courbe passe par les points de coordonnées , et .

On a donc le tableau de variation suivant :

2. Extrémums d'une fonction f sur un intervalle

Soit une fonction définie sur un intervalle .

  • Le maximum de sur est la plus grande valeur de f(x) pour appartenant à . On a alors pour tout de , .
  • Le minimum de sur est la plus petite valeur de f(x) pour appartenant à . On a alors pour tout de , .
  • Un extrémum est un maximum ou un minimum.
Remarque
Lorsqu’on parle de minimum ou de maximum, on doit toujours préciser sur quel intervalle on travaille.
Exemple 1
Voici la représentation graphique d'une fonction  :

Sur l'intervalle :
  • le minimum de est 1, atteint pour  ;
  • le maximum de est 5, atteint pour .
Sur l'intervalle  :
  • le minimum de est 2, atteint pour  ;
  • le maximum de est 5, atteint pour .
Exemple 2
Voici le tableau de variation d'une fonction  :

Sur l'intervalle , le maximum de est 2, atteint pour , et le minimum est –2, atteint pour .
3. Lien avec le signe de la dérivée

Soit f une fonction définie et dérivable sur un intervalle I, on note f ' sa fonction dérivée.

  • Si pour tout x appartenant à I, f '(x) ≥ 0, alors f est croissante sur I.
  • Si pour tout x appartenant à I, f '(x) ≤ 0, alors f est décroissante sur I.
  • Lorsque f possède un extremum en a, alors f '(a) = 0.
Remarques
  • Le dernier point s'explique par le fait que lorsque la fonction f possède un extremum en a, elle change de sens de variation en a, donc la dérivée change de signe en a et donc f ' s'annule en a.
  • La réciproque n'est pas vraie : la dérivée f ' peut s'annuler en a sans que f ne possède un extremum en a.
Exemple
Posons f (x)=x³. On a f ' (x)=3x² donc f ' (x) ≥ 0 pour tout x réel. Ainsi la fonction cube f est croissante sur R. On observe que f ' (0) = 0, néanmoins f ne possède pas d'extremum en 0.

Évalue ce cours !

 

Des quiz et exercices pour mieux assimiler sa leçon

La plateforme de soutien scolaire en ligne myMaxicours propose des quiz et exercices en accompagnement de chaque fiche de cours. Les exercices permettent de vérifier si la leçon est bien comprise ou s’il reste encore des notions à revoir.

S’abonner

 

Des exercices variés pour ne pas s’ennuyer

Les exercices se déclinent sous toutes leurs formes sur myMaxicours ! Selon la matière et la classe étudiées, retrouvez des dictées, des mots à relier ou encore des phrases à compléter, mais aussi des textes à trous et bien d’autres formats !

Dans les classes de primaire, l’accent est mis sur des exercices illustrés très ludiques pour motiver les plus jeunes.

S’abonner

 

Des quiz pour une évaluation en direct

Les quiz et exercices permettent d’avoir un retour immédiat sur la bonne compréhension du cours. Une fois toutes les réponses communiquées, le résultat s’affiche à l’écran et permet à l’élève de se situer immédiatement.

myMaxicours offre des solutions efficaces de révision grâce aux fiches de cours et aux exercices associés. L’élève se rassure pour le prochain examen en testant ses connaissances au préalable.

S’abonner

Des vidéos et des podcasts pour apprendre différemment

Certains élèves ont une mémoire visuelle quand d’autres ont plutôt une mémoire auditive. myMaxicours s’adapte à tous les enfants et adolescents pour leur proposer un apprentissage serein et efficace.

Découvrez de nombreuses vidéos et podcasts en complément des fiches de cours et des exercices pour une année scolaire au top !

S’abonner

 

Des podcasts pour les révisions

La plateforme de soutien scolaire en ligne myMaxicours propose des podcasts de révision pour toutes les classes à examen : troisième, première et terminale.

Les ados peuvent écouter les différents cours afin de mieux les mémoriser en préparation de leurs examens. Des fiches de cours de différentes matières sont disponibles en podcasts ainsi qu’une préparation au grand oral avec de nombreux conseils pratiques.

S’abonner

 

Des vidéos de cours pour comprendre en image

Des vidéos de cours illustrent les notions principales à retenir et complètent les fiches de cours. De quoi réviser sa prochaine évaluation ou son prochain examen en toute confiance !

S’abonner

Découvrez le soutien scolaire en ligne avec myMaxicours

Plongez dans l'univers de myMaxicours et découvrez une approche innovante du soutien scolaire en ligne, conçue pour captiver et éduquer les élèves de CP à la terminale. Notre plateforme se distingue par une riche sélection de contenus interactifs et ludiques, élaborés pour stimuler la concentration et la motivation à travers des parcours d'apprentissage adaptés à chaque tranche d'âge. Chez myMaxicours, nous croyons en une éducation où chaque élève trouve sa place, progresse à son rythme et développe sa confiance en soi dans un environnement bienveillant.

Profitez d'un accès direct à nos Profs en ligne pour une assistance personnalisée, ou explorez nos exercices et corrigés pour renforcer vos connaissances. Notre assistance scolaire en ligne est conçue pour vous accompagner à chaque étape de votre parcours éducatif, tandis que nos vidéos et fiches de cours offrent des explications claires et concises sur une multitude de sujets. Avec myMaxicours, avancez sereinement sur le chemin de la réussite scolaire, armé des meilleurs outils et du soutien de professionnels dédiés à votre épanouissement académique.

Fiches de cours les plus recherchées

Mathématiques

L'équation réduite d'une droite- Terminale- Mathématiques

Mathématiques

Tracer une droite du plan- Terminale- Mathématiques

Mathématiques

Les représentations graphiques d'une série statistique- Terminale- Mathématiques

Mathématiques

Simplification de fractions et fractions irréductibles- Terminale- Mathématiques

Mathématiques

Les calculs avec les puissances- Terminale- Mathématiques

Mathématiques

Puissances de 10 et notation scientifique- Terminale- Mathématiques

Mathématiques

Conversion d'unités de durée

Mathématiques

Conversion d'unités de longueur

Mathématiques

Conversion d'unités d'aire

Mathématiques

Conversion d'unités de contenance