Proportion : définition et propriétés
- Fiche de cours
- Quiz et exercices
- Vidéos et podcasts
Soit A un ensemble appelé population, ayant un nombre a d'éléments (a non nul) et B une partie de l'ensemble A, une sous-population, ayant un nombre b d'événements.
Remarque : Le nombre d'éléments d'une population est appelé l'effectif.
.
• Le nombre a est toujours supérieur ou égal au nombre b.
• Par conséquent le rapport est un nombre compris entre 0 et 1.
• On parle toujours de proportion « de »... « par rapport à ».
Donner une proportion sans préciser par rapport à quelle population on se place ne veut strictement rien dire, et c'est malheureusement souvent le cas, même dans les journaux !
Exemple
Dans un lycée de 735 élèves il y a 385 filles. On cherche à calculer la proportion de filles par rapport à l'ensemble des élèves de ce lycée.
La population A est donc ici l'ensemble des élèves du lycée et la sous-population B représente les filles de ce lycée.
La proportion de filles par rapport à l'ensemble des élèves de ce lycée est donc l nombre réel : .
On peut donc aussi, même si c'est peu courant, donner le résultat sous la forme d'un réel avec une précision donnée.
Exemple
Dans l'exemple précédent, la proportion de filles par rapport à l'ensemble des élèves est égale à , soit environ 0,523809.
On peut décider de donner cette proportion avec 4 chiffres après la virgule (donc à 10-4 près) : 0,5238 à 0,0001 près (ou à 10-4 près).
Sous cette forme il faudra toujours préciser le degré d'approximation choisi.
Il est fréquemment de 4 chiffres significatifs.
Exemple
Dans l'exemple précédent, la proportion est égale à , soit environ , ce qui représente 52,38 % à 0,01 % près.
Ainsi, plus de la moitié des élèves de ce lycée sont des filles.
Sous cette forme il faudra toujours préciser le degré d'approximation choisi.
On donne souvent le résultat à 0,0001 près soit 0,01 % près.
La proportion exprimée en pourcentage de B par rapport à A est le nombre (réel) défini par le rapport : .
Pour obtenir directement le nombre t on peut écrire : .
Remarque : on dit que B représente t % de A.
Exemple et remarque importante
Dans l'exemple précédent, on cherche à calculer la proportion de filles par rapport à l'ensemble des élèves dans un lycée de 735 élèves pour 385 filles.
On peut écrire que la proportion cherchée est :
•% à 0,01% près ;
• ou que : .
Donc la proportion de filles dans le lycée est d'environ 52,38 %.
Mais écrire que est égal à 52,38 % est faux.
En effet : .
Il est plus habituel, cependant, d'exprimer une proportion sous forme de pourcentage avec une précision de 2 chiffres après la virgule pour le pourcentage lorsque le résultat n'est pas un nombre entier.
Soient A un ensemble ayant un nombre a d'éléments (a non nul), B une partie de l'ensemble A ayant un nombre b (non nul) d'éléments et C une partie de B ayant c éléments.
Remarque : on peut écrire ce rapport sous la forme %.
Démonstration
Si B représente t1 % de A, alors %
Si C représente t2 % de B, alors %.
Or : .
Ce qui représente la proportion de C par rapport à A.
Donc représente bien la proportion de C par rapport à A.
Exemple
Une librairie-papeterie fait 38 % de son chiffre d'affaire sur la vente de livres.
Elle a vendu en un mois pour 2 500 euros de livres, dont 69 % en livres de poche.
Calculer le pourcentage de livres de poche sur le chiffre d'affaires global de la librairie-papeterie.
On peut schématiser ainsi le problème :
On est bien dans le cas d'application de la propriété sur les pourcentages de pourcentages.
Donc le pourcentage de livres de poche sur le chiffre d'affaires global de la librairie-papeterie est donné par :
.
Ainsi, 26,22 % du chiffre d'affaires global provient de la vente des livres de poche.
Des quiz et exercices pour mieux assimiler sa leçon
La plateforme de soutien scolaire en ligne myMaxicours propose des quiz et exercices en accompagnement de chaque fiche de cours. Les exercices permettent de vérifier si la leçon est bien comprise ou s’il reste encore des notions à revoir.
Des exercices variés pour ne pas s’ennuyer
Les exercices se déclinent sous toutes leurs formes sur myMaxicours ! Selon la matière et la classe étudiées, retrouvez des dictées, des mots à relier ou encore des phrases à compléter, mais aussi des textes à trous et bien d’autres formats !
Dans les classes de primaire, l’accent est mis sur des exercices illustrés très ludiques pour motiver les plus jeunes.
Des quiz pour une évaluation en direct
Les quiz et exercices permettent d’avoir un retour immédiat sur la bonne compréhension du cours. Une fois toutes les réponses communiquées, le résultat s’affiche à l’écran et permet à l’élève de se situer immédiatement.
myMaxicours offre des solutions efficaces de révision grâce aux fiches de cours et aux exercices associés. L’élève se rassure pour le prochain examen en testant ses connaissances au préalable.
Des vidéos et des podcasts pour apprendre différemment
Certains élèves ont une mémoire visuelle quand d’autres ont plutôt une mémoire auditive. myMaxicours s’adapte à tous les enfants et adolescents pour leur proposer un apprentissage serein et efficace.
Découvrez de nombreuses vidéos et podcasts en complément des fiches de cours et des exercices pour une année scolaire au top !
Des podcasts pour les révisions
La plateforme de soutien scolaire en ligne myMaxicours propose des podcasts de révision pour toutes les classes à examen : troisième, première et terminale.
Les ados peuvent écouter les différents cours afin de mieux les mémoriser en préparation de leurs examens. Des fiches de cours de différentes matières sont disponibles en podcasts ainsi qu’une préparation au grand oral avec de nombreux conseils pratiques.
Des vidéos de cours pour comprendre en image
Des vidéos de cours illustrent les notions principales à retenir et complètent les fiches de cours. De quoi réviser sa prochaine évaluation ou son prochain examen en toute confiance !