Nombres complexes et transformations géométriques
- Fiche de cours
- Quiz et exercices
- Vidéos et podcasts
- Connaître l'écriture complexe d'une homothétie
- Connaître l'écriture complexe d'une rotation
La fonction définie dans admet pour transformation associée dans le plan complexe la translation de vecteur
En effet, soient M(z) et M'(z'), les images de z et z' dans le plan complexe. Quel que soit M, l'affixe du vecteur est z' - z = a, donc = donc M' est l'image de M dans la translation de vecteur .
Et, réciproquement, on démontre de façon analogue que si le point N'(z') est l'image du point N(z) dans la translation de vecteur d'affixe b, alors z' = z + b.
Exemples
► Si T est la transformation qui à tout point M(z) du plan complexe associe le point M'(z') tel que
z' = z - i + 1, alors T est la translation de vecteur d'affixe -i + 1. En particulier, si R est le point d'affixe -i + 1, alors quel que soit M,
► Soit dans le plan complexe, les points A d'affixe 1 + et B d'affixe .
Si C est l'image du point B dans la translation de vecteur , l'affixe zc de C est :
La fonction définie dans admet pour transformation associée dans le plan complexe l'homothétie de centre Ω et de rapport k.
Démonstration
En effet, soit M(z) et M'(z') les images de z et z' dans le plan complexe. Quel que soit M, l'affixe du vecteur est z - ω et l'affixe du vecteur est z' - ω.
z' - ω = k(z - ω) donc , on en déduit que M' est l'image de M dans l'homothétie de centre Ω et de rapport k.
Et, réciproquement, on démontre de façon analogue que si le point N'(z') est l'image du point N(z) dans l'homothétie de centre Ω et de rapport k, alors z' - ω = k(z - ω).
Exemples
► Si H est la transformation qui à tout point M(z) du plan complexe associe le point M'(z') tel que
z' - 2 + i = 3(z - 2 + i), alors H est l'homothétie de centre Ω(2 - i) et de rapport 3.
► H est l'homothétie de centre Ω(1 + i) et de rapport -2. L'écriture complexe de H est :
Le transformé de A(1 - i) par H est A'(1 + 5i).
Si z = 1 - i alors
la fonction définie dans admet pour transformation associée dans le plan complexe la rotation de centre Ω et d'angle θ.
Démonstration
En effet, soit M(z) et M'(z'), les images de z et z' dans le plan complexe. Quel que soit M, l'affixe du vecteur est z - ω et l'affixe du vecteur est z' - ω.
Ainsi, quel que soit M, ΩM' = ΩM et donc M' est l'image de M par la rotation de centre Ω et d'angle θ.
Et, réciproquement, on démontre de façon analogue que si le point N'(z') est l'image du point N(z) par la rotation de centre Ω et d'angle θ, alors z' - ω =
Exemples
► R est la transformation qui à tout point M d'affixe z, associe le point M' d'affixe z' tel que z' = iz.
et T est la rotation de centre O et d'angle
► Soit la rotation de centre Ω d'affixe 1 - i et d'angle , l'écriture complexe de R est :
Des quiz et exercices pour mieux assimiler sa leçon
La plateforme de soutien scolaire en ligne myMaxicours propose des quiz et exercices en accompagnement de chaque fiche de cours. Les exercices permettent de vérifier si la leçon est bien comprise ou s’il reste encore des notions à revoir.
Des exercices variés pour ne pas s’ennuyer
Les exercices se déclinent sous toutes leurs formes sur myMaxicours ! Selon la matière et la classe étudiées, retrouvez des dictées, des mots à relier ou encore des phrases à compléter, mais aussi des textes à trous et bien d’autres formats !
Dans les classes de primaire, l’accent est mis sur des exercices illustrés très ludiques pour motiver les plus jeunes.
Des quiz pour une évaluation en direct
Les quiz et exercices permettent d’avoir un retour immédiat sur la bonne compréhension du cours. Une fois toutes les réponses communiquées, le résultat s’affiche à l’écran et permet à l’élève de se situer immédiatement.
myMaxicours offre des solutions efficaces de révision grâce aux fiches de cours et aux exercices associés. L’élève se rassure pour le prochain examen en testant ses connaissances au préalable.
Des vidéos et des podcasts pour apprendre différemment
Certains élèves ont une mémoire visuelle quand d’autres ont plutôt une mémoire auditive. myMaxicours s’adapte à tous les enfants et adolescents pour leur proposer un apprentissage serein et efficace.
Découvrez de nombreuses vidéos et podcasts en complément des fiches de cours et des exercices pour une année scolaire au top !
Des podcasts pour les révisions
La plateforme de soutien scolaire en ligne myMaxicours propose des podcasts de révision pour toutes les classes à examen : troisième, première et terminale.
Les ados peuvent écouter les différents cours afin de mieux les mémoriser en préparation de leurs examens. Des fiches de cours de différentes matières sont disponibles en podcasts ainsi qu’une préparation au grand oral avec de nombreux conseils pratiques.
Des vidéos de cours pour comprendre en image
Des vidéos de cours illustrent les notions principales à retenir et complètent les fiches de cours. De quoi réviser sa prochaine évaluation ou son prochain examen en toute confiance !