Loi binomiale, loi de Bernoulli
- Fiche de cours
- Quiz et exercices
- Vidéos et podcasts
• Calculs de probabilités dans le cadre de la loi binomiale,
• Utiliser l’espérance d’une loi binomiale.
Exemple :
On lance trois fois de suite une pièce truquée pour laquelle la probabilité d’obtenir pile est . On gagne 5 € pour chaque sortie de « Pile ». Tracer l’arbre pondéré et déterminer la loi de probabilité de cette variable aléatoire.
Soit X la variable aléatoire qui à chaque issue associe le nombre de succès.
Un succès s est représenté par chaque apparition de l’événement « Pile », de probabilité p = . L’échec, l’événement aura pour probabilité .
k | 0 | 1 | 2 | 3 |
P(X=k) |
Les résultats sont laissés sous forme de fraction de la totalité des cas (on pourrait passer en fractions irréductibles).
Remarque : on dit que cette loi de probabilité est la loi du nombre de succès.
→ Pour le schéma de Bernoulli précédent,
• Pour 0 succès on a car un seul chemin n’a aucun succès.
• Pour 2 succès on a car trois chemins ont 2 succès.
Remarque : les coefficients binomiaux sont donnés par toutes les calculatrices de lycée.
• Sur Texas instrument (82 stat, 83 & 84) écrire n (ici 3) puis entrer la fonction « Combinaison » (qui est dans le menu « Math/Prb ») puis l’argument k (ici 2). Si les instructions sont en anglais, la fonction sera « nCr » dans le même menu qu’indiqué.
• Sur TI-NSpire dans une page calcul entrer « nCr(3,2).
• Sur Casio écrire n (ici 3) puis entrer la fonction « nCr » (dans « OPTN » puis « PROB ) puis l’argument k (ici 2).
Utilisation d’un tableur pour déterminer des coefficients binomiaux :
• Dans une cellule écrire « =COMBIN(3;2)».
Notation : cette loi est notée .
C’est ce que l’on constate avec l’exemple précédent. Pour 2 succès, on peut compter « à la main » la probabilité de chaque chemin et additionner le tout, ce qui donne . D’après la définition, pour on a .
• Sur Texas instrument (82 stat, 83 & 84) entrer la fonction « binomFdp(n,p,k) » (qui est dans le menu « distrib ») avec les arguments n = 1000, p = 0,5 et k = 462.
• Sur TI-NSpire dans une page calcul entrer « binomPdf(1000,0.5,462) »
(rappel : les points sont des virgules, les virgules des caractères de séparation des variables).
• Sur Casio entrer la fonction « BinomialPD(k,n,p) » (dans « OPTN » puis « STAT » puis « DIST » puis « BINM » et « Bpd » pour finir) avec les arguments k = 462, n = 1000 et p = 0,5.
Utilisation d’un tableur pour déterminer P(X=k) :
• Dans une cellule écrire « =LOI.BINOMIALE(valeur de k ; n ; p ;FAUX) ».
Remarque : sur certains tableurs au lieu de « FAUX » il faut écrire 0.
• sur Texas instrument entrer la fonction « binomFrép(n,p,k) » (qui est dans le menu « distrib ») avec les arguments n = 1000, p = 0,5 et k = 462.
• sur TI-NSpire dans une page calcul entrer « binomCdf(1000,0.5,0,462) »
(rappel : les points sont des virgules, les virgules des caractères de séparation des variables).
• Sur Casio entrer la fonction « BinomialCD(k,n,p) » (dans « OPTN » puis « STAT » puis « DIST » puis « BINM » et « Bcd » pour finir) avec les arguments k = 462 la valeur à tester, n = 1000 et p = 0,5.
Utilisation d’un tableur :
• Dans une cellule écrire « =LOI.BINOMIALE(valeur de k ; n ; p ;VRAI) » que l’on tirera vers le bas.
Remarque : sur certains tableurs au lieu de « VRAI » il faut écrire « 1 ».
Dans l’exemple précédent on aurait donc
Par convention .
• Si alors .
• Si alors (formule de Pascal).
Ces deux règles permettent de calculer les coefficients binomiaux de proche en proche, en construisant le « Triangle de Pascal » par exemple, ce qui se fait assez facilement sur tableur.
Dans le tableur enlever l’affichage des zéros (cliquer sur Outils/Options puis décocher la case « Valeurs zéro » dans Affichage).
Mettre des 1 en première colonne et en diagonale.
En B3 on écrira une formule du genre « =A2+B2 » que l’on recopie vers le bas, on recopie aussi cette formule vers la droite pour les cellules sans valeur à l’intérieur du triangle.
Rappel : les coefficients binomiaux sont obtenus avec la calculatrice.
Des quiz et exercices pour mieux assimiler sa leçon
La plateforme de soutien scolaire en ligne myMaxicours propose des quiz et exercices en accompagnement de chaque fiche de cours. Les exercices permettent de vérifier si la leçon est bien comprise ou s’il reste encore des notions à revoir.
Des exercices variés pour ne pas s’ennuyer
Les exercices se déclinent sous toutes leurs formes sur myMaxicours ! Selon la matière et la classe étudiées, retrouvez des dictées, des mots à relier ou encore des phrases à compléter, mais aussi des textes à trous et bien d’autres formats !
Dans les classes de primaire, l’accent est mis sur des exercices illustrés très ludiques pour motiver les plus jeunes.
Des quiz pour une évaluation en direct
Les quiz et exercices permettent d’avoir un retour immédiat sur la bonne compréhension du cours. Une fois toutes les réponses communiquées, le résultat s’affiche à l’écran et permet à l’élève de se situer immédiatement.
myMaxicours offre des solutions efficaces de révision grâce aux fiches de cours et aux exercices associés. L’élève se rassure pour le prochain examen en testant ses connaissances au préalable.
Des vidéos et des podcasts pour apprendre différemment
Certains élèves ont une mémoire visuelle quand d’autres ont plutôt une mémoire auditive. myMaxicours s’adapte à tous les enfants et adolescents pour leur proposer un apprentissage serein et efficace.
Découvrez de nombreuses vidéos et podcasts en complément des fiches de cours et des exercices pour une année scolaire au top !
Des podcasts pour les révisions
La plateforme de soutien scolaire en ligne myMaxicours propose des podcasts de révision pour toutes les classes à examen : troisième, première et terminale.
Les ados peuvent écouter les différents cours afin de mieux les mémoriser en préparation de leurs examens. Des fiches de cours de différentes matières sont disponibles en podcasts ainsi qu’une préparation au grand oral avec de nombreux conseils pratiques.
Des vidéos de cours pour comprendre en image
Des vidéos de cours illustrent les notions principales à retenir et complètent les fiches de cours. De quoi réviser sa prochaine évaluation ou son prochain examen en toute confiance !