Fiche de cours

Les suites géométriques- Première techno- Mathématiques

Lycée   >   Premiere techno   >   Mathématiques   >   Les suites géométriques- Première techno- Mathématiques

  • Fiche de cours
  • Quiz et exercices
  • Vidéos et podcasts
Objectifs
  • Reconnaitre une suite géométrique.
  • Exprimer le terme général en fonction de , et l’utiliser pour calculer un terme donné.
  • Modéliser un phénomène discret à croissance exponentielle par une suite géométrique.
Points clés
  • Une suite géométrique est une suite récurrente définie par est un réel appelé raison de la suite.
  • Pour tout , , ou bien avec  un entier.
Pour bien comprendre
  • Notion de suite numérique et de terme général d'une suite numérique
  • Notion de suite définie par récurrence
  • Puissances d’un nombre.
1. Définition
Une suite est géométrique s'il existe un réel q tel que  pour tout . Le réel  est appelé raison de la suite.

Dans une suite géométrique, on passe d’un terme à son suivant en multipliant toujours par le même nombre non nul .

Exemple
La suite définie par  avec est une suite géométrique de raison 2.
Les premiers termes de cette suite sont 1, 2, 4, 8, 16…
Montrer qu’une suite est géométrique

Une suite de termes non nuls est géométrique si le quotient de 2 termes consécutifs quelconques est constant quel que soit .

Pour montrer qu’une suite est géométrique, on calcule le quotient pour différentes valeurs de . Si le quotient est constant, la suite est géométrique.

Exemple
On cherche à savoir si la suite définie par est une suite géométrique.
Les premiers termes de la suite sont 2, 10, 50, 250… Il semblerait que la suite soit géométrique de raison 5. Apportons la preuve par le calcul :
en simplifiant par 3 et par .

Comme le quotient est constant, on peut conclure que la suite  est géométrique de raison 5 et de premier terme .
2. Formule explicite

Soit une suite géométrique de raison et de premier terme .
On a les formules suivantes :

ou

avec :
  • le premier terme de la suite
  • un terme de rang
  • un terme de rang
  • un nombre entier naturel
  • un nombre entier naturel
  • un nombre réel

Pour obtenir :

  • en partant de  : on multiplie fois par la raison ;
  • en partant de (lorsque ) : on multiplie fois par la raison.

Ainsi, , ,

Exemple
Pour une suite géométrique de raison (–0,3) et de premier terme , on peut écrire et ainsi connaitre directement la valeur de n'importe quel terme de la suite.
Par exemple, .
3. Lien avec les fonctions exponentielles

Une suite géométrique étant de terme général , on peut l'écrire est la fonction exponentielle .

Par conséquent, la représentation graphique d'une suite géométrique est une série de points non alignés.

Une suite géométrique est donc l'expression discrète d'une fonction exponentielle.

Exemple avec :
, , ,
Pour une suite géométrique, on parle alors de croissance exponentielle, puisque les points représentant la suite sont sur la courbe de la fonction exponentielle .
4. Modéliser une situation avec une suite géométrique
Situation

Une personne place la somme de 10 000 € sur un placement à intérêts composés lui rapportant 3 % par an. Cela signifie que chaque année, 3 % du montant du placement sont ajoutés à la somme déjà présente sur le placement. On note  le montant du placement au bout de  années.

Modélisation

est le terme général d'une suite géométrique de premier terme et de raison 1,03 puisque « augmenter de 3 % » revient à « multiplier par , donc par 1,03 ». On a donc .
On peut donc écrire le terme général : .

Utilisation

Ainsi, on peut répondre à une question du type « quelle sera la somme détenue sur ce placement au bout de 2 ans ? 5 ans ? 10 ans ? » en calculant , , .


On peut aussi répondre à une question du type « au bout de combien d'années le montant placé est-il doublé ? » en calculant  pour des valeurs successives de  jusqu'à avoir .

On peut utiliser un tableur, en tapant « =10000*1,03^A2 » dans la cellule B2 et en étirant, pour répondre que c'est au bout de 24 ans.

Évalue ce cours !

 

Des quiz et exercices pour mieux assimiler sa leçon

La plateforme de soutien scolaire en ligne myMaxicours propose des quiz et exercices en accompagnement de chaque fiche de cours. Les exercices permettent de vérifier si la leçon est bien comprise ou s’il reste encore des notions à revoir.

S’abonner

 

Des exercices variés pour ne pas s’ennuyer

Les exercices se déclinent sous toutes leurs formes sur myMaxicours ! Selon la matière et la classe étudiées, retrouvez des dictées, des mots à relier ou encore des phrases à compléter, mais aussi des textes à trous et bien d’autres formats !

Dans les classes de primaire, l’accent est mis sur des exercices illustrés très ludiques pour motiver les plus jeunes.

S’abonner

 

Des quiz pour une évaluation en direct

Les quiz et exercices permettent d’avoir un retour immédiat sur la bonne compréhension du cours. Une fois toutes les réponses communiquées, le résultat s’affiche à l’écran et permet à l’élève de se situer immédiatement.

myMaxicours offre des solutions efficaces de révision grâce aux fiches de cours et aux exercices associés. L’élève se rassure pour le prochain examen en testant ses connaissances au préalable.

S’abonner

Des vidéos et des podcasts pour apprendre différemment

Certains élèves ont une mémoire visuelle quand d’autres ont plutôt une mémoire auditive. myMaxicours s’adapte à tous les enfants et adolescents pour leur proposer un apprentissage serein et efficace.

Découvrez de nombreuses vidéos et podcasts en complément des fiches de cours et des exercices pour une année scolaire au top !

S’abonner

 

Des podcasts pour les révisions

La plateforme de soutien scolaire en ligne myMaxicours propose des podcasts de révision pour toutes les classes à examen : troisième, première et terminale.

Les ados peuvent écouter les différents cours afin de mieux les mémoriser en préparation de leurs examens. Des fiches de cours de différentes matières sont disponibles en podcasts ainsi qu’une préparation au grand oral avec de nombreux conseils pratiques.

S’abonner

 

Des vidéos de cours pour comprendre en image

Des vidéos de cours illustrent les notions principales à retenir et complètent les fiches de cours. De quoi réviser sa prochaine évaluation ou son prochain examen en toute confiance !

S’abonner

Découvrez le soutien scolaire en ligne avec myMaxicours

Plongez dans l'univers de myMaxicours et découvrez une approche innovante du soutien scolaire en ligne, conçue pour captiver et éduquer les élèves de CP à la terminale. Notre plateforme se distingue par une riche sélection de contenus interactifs et ludiques, élaborés pour stimuler la concentration et la motivation à travers des parcours d'apprentissage adaptés à chaque tranche d'âge. Chez myMaxicours, nous croyons en une éducation où chaque élève trouve sa place, progresse à son rythme et développe sa confiance en soi dans un environnement bienveillant.

Profitez d'un accès direct à nos Profs en ligne pour une assistance personnalisée, ou explorez nos exercices et corrigés pour renforcer vos connaissances. Notre assistance scolaire en ligne est conçue pour vous accompagner à chaque étape de votre parcours éducatif, tandis que nos vidéos et fiches de cours offrent des explications claires et concises sur une multitude de sujets. Avec myMaxicours, avancez sereinement sur le chemin de la réussite scolaire, armé des meilleurs outils et du soutien de professionnels dédiés à votre épanouissement académique.

Fiches de cours les plus recherchées

Mathématiques

Le sens de variation d'une suite

Mathématiques

Définitions et notations ensemblistes- Première techno- Mathématiques

Mathématiques

Les différents raisonnements mathématiques- Première techno - Mathématiques

Mathématiques

Le vocabulaire de la logique- Première techno - Mathématiques

Mathématiques

Proportions et pourcentages- Première- Mathématiques

Mathématiques

Taux d'évolution global et taux d'évolution réciproque- Première- Mathématiques

Mathématiques

Taux d'évolution et coefficient multiplicateur- Première- Mathématiques

Mathématiques

Le nombre dérivé en un point - approche graphique

Mathématiques

Fonction dérivée, dérivées usuelles et opérations sur les dérivées

Mathématiques

Dérivée, sens de variation et extrema d'une fonction- Première techno - Mathématiques