Fiche de cours

Les ensembles de nombres

Lycée   >   Seconde   >   Mathématiques   >   Les ensembles de nombres

  • Fiche de cours
  • Quiz et exercices
  • Vidéos et podcasts
Objectifs
  • Connaitre les différents ensembles de nombres.
  • Écrire un nombre rationnel ou décimal sous forme de quotient.
  • Donner une valeur approchée ou arrondie d’un nombre décimal.
  • Donner un encadrement, d’amplitude donnée, d’un nombre réel par des décimaux.
Points clés
  • On appelle nombres réels tous les nombres susceptibles de mesurer la longueur d’un segment, ainsi que tous leurs opposés. L’ensemble des nombres réels est noté .
  • Tout nombre réel possède une écriture décimale, composée d’un signe (+ ou –), d’un nombre entier (avant la virgule) et de décimales (chiffres après la virgule). Il y a un nombre infini de décimales, qui peuvent néanmoins ne pas être écrites si elles sont toutes nulles.
  • Un nombre réel est un entier naturel s’il est positif et si son écriture décimale ne contient que des zéros. L’ensemble des entiers naturels { 0 ; 1 ; 2 ; 3 ; 4 ; … } est noté .
  • Un nombre réel est un entier relatif si son écriture décimale ne contient que des zéros. L’ensemble des entiers relatifs
    { ... ; –4 ; –3 ; –2 ; –1 ; 0 ; 1 ; 2 ; 3 ; 4 … } est noté .
  • Un nombre rationnel est un nombre réel qui peut s’écrire sous la forme d’un quotient , où est un entier relatif et un entier relatif différent de 0. L’ensemble des nombres rationnels est noté  (comme « quotient »).
  • Un nombre réel qui n’appartient pas à  est dit irrationnel.
  • Un nombre décimal est un nombre réel qui peut s’écrire sous la forme  est un entier relatif et est un entier naturel. L'ensemble des nombres décimaux est noté (comme « décimal »).
  • Soient  un entier naturel et un nombre réel. Il existe deux nombres décimaux et tels que et tels que et .
    Le nombre est la valeur approchée de à près par défaut et le nombre est la valeur approchée de à près par excès.
    Les nombres et donnent un encadrement de par des décimaux à près.
    Les nombres et sont des arrondis de à chiffres après la virgule.
Pour bien comprendre
  •  Inclusion d'ensembles ()
  • Théorème de Pythagore
1. Nombres réels

Le plan est muni d’une unité de longueur.

On appelle nombres réels tous les nombres susceptibles de mesurer la longueur d’un segment, ainsi que tous leurs opposés. L’ensemble des nombres réels est noté .
Remarque
Ces nombres permettent également de mesurer des « grandeurs » : aires, volumes, températures, durée, etc...
Exemples de réels
  • 0, car il mesure la longueur de tout segment réduit à un seul point.
  •  , car il mesure la diagonale d’un carré de côté 1. En effet, si on nomme  ce carré, alors  (application du théorème de Pythagore). Comme le côté est 1, on a  et donc .
  • , car il est l’opposé de  qui est réel.
Propriété
Tout nombre réel possède une écriture décimale, composée d’un signe (+ ou –), d’un nombre entier (avant la virgule) et d'un nombre infini de décimales (chiffres après la virgule). Ces décimales peuvent néanmoins ne pas être écrites si elles sont toutes nulles.
Exemples
  • … le zéro se répète à l’infini.
  • … le 6 se répète à l’infini.
  • … la séquence 54 se répète à l’infini. 
  • … il y a une infinité de décimales, sans répétition infinie (c’est aussi le cas pour , , …).
2. Nombres entiers naturels et relatifs
Un nombre réel est un entier naturel s’il est positif et si son écriture décimale ne contient que des zéros.
L’ensemble des entiers naturels { 0 ; 1 ; 2 ; 3 ; 4 ; … } est noté .
Exemples
 
 ;  ; ; et
Un nombre réel est un entier relatif si son écriture décimale ne contient que des zéros.
L’ensemble des entiers relatifs { ... –4 ; –3 ; –2 ; –1 ; 0 ; 1 ; 2 ; 3 ; 4 … } est noté .
Exemples
 ; 
 ;  ; et
3. Nombres décimaux
a. Définition
Un nombre décimal est un nombre réel qui peut s’écrire sous la forme  est un entier relatif et est un entier naturel.
L'ensemble des nombres décimaux est noté (comme « décimal »).
Exemples
  •  car  s’écrit  avec  et 
  •  car  s’écrit  avec  et 
  •  car 
  •  car  ne peut pas s’écrire sous la forme  avec  un entier relatif et  un entier naturel
  •  pour les mêmes raisons que 
  •  :  n’est pas un nombre rationnel, donc ne peut pas être un nombre décimal.
Remarque
L’écriture décimale d’un nombre décimal se termine par une infinité de zéros. Seuls les nombres décimaux possèdent cette propriété.
Exemples
  • ... (infinité de zéros) et
  • ... (infinité de zéros) et
  • ... (infinité de six) et
b. Encadrement d'un nombre réel par des décimaux
Propriété
Soient  un entier naturel et un nombre réel. Il existe deux nombres décimaux et tels que et tels que et .
Le nombre est la valeur approchée de à près par défaut et le nombre est la valeur approchée de à près par excès.
Les nombres et donnent un encadrement de par des décimaux à près.
Les nombres et sont des arrondis de à chiffres après la virgule.
Méthode

Pour obtenir l'encadrement par deux décimaux  et (avec ) d'un réel  est à près, il faut :

  1. trouver , qui correspond au réel en écriture décimale, en ne gardant que les premières décimales de ;
  2. trouver , qui correspond à ;
  3. conclure en remplaçant les valeurs de et : .
Exemple
Donner un encadrement de à près.
  1. L'écriture décimale de est donc (on ne garde que les trois première décimales).
  2. .
  3. On conclut : est un encadrement de à près.
Méthode

Pour savoir si un encadrement par deux décimaux et (avec ) d'un réel est à près ou pas, calculer .
Si , alors l'encadrement est à près ;
Si , alors l'encadrement n'est pas à  près.

Exemple
Si on pose ..., alors .
Si on pose et , alors on a :
avec et qui sont bien des décimaux donc cet encadrement de est à près.
c. Arrondi d'un résultat

Dans un problème, on peut demander de donner la valeur approchée d’un résultat, en arrondissant avec un nombre de décimales adapté à la réponse attendue : ce sont les chiffres significatifs.

Exemple
Un triangle  est rectangle en et on sait et . Donner une valeur approchée de  au centimètre près.
D’après le théorème de Pythagore, on a : .
Par conséquent :  et donc et donc .
Comme on demande un résultat approché au centimètre près, on doit donc choisir deux chiffres après la virgule et on peut répondre .
4. Nombres rationnels
Un nombre rationnel est un nombre réel qui peut s’écrire sous la forme d’un quotient , où est un entier relatif et un entier relatif différent de 0.
L’ensemble des nombres rationnels est noté  (comme « quotient »).
Exemples
  •  car  s’écrit , avec  et 
  •  car  ( et )
  •  car  ( et )
  •  car 
  •  : on ne peut trouver aucun quotient  avec des entiers qui soit égal à 
Remarque
L'écriture décimale d'un nombre rationnel se termine par la répétition infinie d'un nombre ou d'une séquence de nombres. Seuls les nombres rationnels possèdent cette propriété.
Exemples
  • … (infinité de zéros) et 
  • … (infinité de six) et 
  • … (infinité de la séquence 54) et 
  • … (infinité de décimales, sans répétition infinie) et 
Un nombre réel qui n’appartient pas à  est dit irrationnel.
Propriété
Le nombre n’est pas un nombre rationnel. C’est donc un irrationnel.
5. Nature d'un nombre réel
Un nombre réel qui appartient à  est un (entier) naturel.
Un nombre réel qui appartient à  est un (entier) relatif.
Un nombre réel qui appartient à est un décimal.
Un nombre réel qui appartient à  est un rationnel.
Un nombre réel qui n’appartient pas à  est un irrationnel.
Remarque
Ces qualificatifs déterminent la nature du nombre réel étudié.
Propriété
On a les inclusions suivantes :

Exemples
25 est un entier naturel (), c'est aussi un entier relatif (), un décimal (), un rationnel () et un réel ().
 est un décimal (), c'est aussi un rationnel () et un réel (). 

Évalue ce cours !

 

Des quiz et exercices pour mieux assimiler sa leçon

La plateforme de soutien scolaire en ligne myMaxicours propose des quiz et exercices en accompagnement de chaque fiche de cours. Les exercices permettent de vérifier si la leçon est bien comprise ou s’il reste encore des notions à revoir.

S’abonner

 

Des exercices variés pour ne pas s’ennuyer

Les exercices se déclinent sous toutes leurs formes sur myMaxicours ! Selon la matière et la classe étudiées, retrouvez des dictées, des mots à relier ou encore des phrases à compléter, mais aussi des textes à trous et bien d’autres formats !

Dans les classes de primaire, l’accent est mis sur des exercices illustrés très ludiques pour motiver les plus jeunes.

S’abonner

 

Des quiz pour une évaluation en direct

Les quiz et exercices permettent d’avoir un retour immédiat sur la bonne compréhension du cours. Une fois toutes les réponses communiquées, le résultat s’affiche à l’écran et permet à l’élève de se situer immédiatement.

myMaxicours offre des solutions efficaces de révision grâce aux fiches de cours et aux exercices associés. L’élève se rassure pour le prochain examen en testant ses connaissances au préalable.

S’abonner

Des vidéos et des podcasts pour apprendre différemment

Certains élèves ont une mémoire visuelle quand d’autres ont plutôt une mémoire auditive. myMaxicours s’adapte à tous les enfants et adolescents pour leur proposer un apprentissage serein et efficace.

Découvrez de nombreuses vidéos et podcasts en complément des fiches de cours et des exercices pour une année scolaire au top !

S’abonner

 

Des podcasts pour les révisions

La plateforme de soutien scolaire en ligne myMaxicours propose des podcasts de révision pour toutes les classes à examen : troisième, première et terminale.

Les ados peuvent écouter les différents cours afin de mieux les mémoriser en préparation de leurs examens. Des fiches de cours de différentes matières sont disponibles en podcasts ainsi qu’une préparation au grand oral avec de nombreux conseils pratiques.

S’abonner

 

Des vidéos de cours pour comprendre en image

Des vidéos de cours illustrent les notions principales à retenir et complètent les fiches de cours. De quoi réviser sa prochaine évaluation ou son prochain examen en toute confiance !

S’abonner

Découvrez le soutien scolaire en ligne avec myMaxicours

Plongez dans l'univers de myMaxicours et découvrez une approche innovante du soutien scolaire en ligne, conçue pour captiver et éduquer les élèves de CP à la terminale. Notre plateforme se distingue par une riche sélection de contenus interactifs et ludiques, élaborés pour stimuler la concentration et la motivation à travers des parcours d'apprentissage adaptés à chaque tranche d'âge. Chez myMaxicours, nous croyons en une éducation où chaque élève trouve sa place, progresse à son rythme et développe sa confiance en soi dans un environnement bienveillant.

Profitez d'un accès direct à nos Profs en ligne pour une assistance personnalisée, ou explorez nos exercices et corrigés pour renforcer vos connaissances. Notre assistance scolaire en ligne est conçue pour vous accompagner à chaque étape de votre parcours éducatif, tandis que nos vidéos et fiches de cours offrent des explications claires et concises sur une multitude de sujets. Avec myMaxicours, avancez sereinement sur le chemin de la réussite scolaire, armé des meilleurs outils et du soutien de professionnels dédiés à votre épanouissement académique.

Fiches de cours les plus recherchées

Mathématiques

Nombres pairs et impairs

Mathématiques

Les nombres premiers

Mathématiques

Les calculs avec la racine carrée

Mathématiques

Distance entre deux points et coordonnées du milieu d'un segment

Mathématiques

Les configurations du plan

Mathématiques

Aires et volumes - formulaire

Mathématiques

L'alignement des points

Mathématiques

Une équation cartésienne de droite

Mathématiques

Tracer une droite du plan- Seconde- Mathématiques

Mathématiques

Droites parallèles et sécantes