Fiche de cours

Le son, phénomène vibratoire

Lycée   >   Premiere   >   Sciences   >   Le son, phénomène vibratoire

  • Fiche de cours
  • Quiz et exercices
  • Vidéos et podcasts
Objectifs
  • Exploiter le spectre d’un son.
  • Identifier des sons purs et composés.
  • Relier puissance sonore par unité de surface et niveau d’intensité sonore exprimé en décibels.
  • Relier qualitativement la fréquence fondamentale du signal émis et la longueur d’une corde vibrante.
Points clés
  • Un son pur est associé à un signal dépendant du temps de façon sinusoïdale.
  • Un signal périodique de fréquence f se décompose en une somme de signaux sinusoïdaux de fréquences multiples de f. Le son associé à ce signal est un son composé. f est appelée fréquence fondamentale, les autres fréquences sont appelées harmoniques.
  • La puissance par unité de surface transportée par une onde sonore est quantifiée par son intensité. Son niveau d’intensité sonore est exprimé en décibels selon une échelle logarithmique.
  • Une corde tendue émet en vibrant un son composé dont la fréquence fondamentale ne dépend que de ses caractéristiques (longueur, tension, masse linéique). Dans les instruments à vent, un phénomène analogue se produit par vibration de l’air dans un tuyau.
Pour bien comprendre
  • Notions de son et de fréquence
1. La production et l'analyse d'un son

Les instruments de musique produisent des sons harmonieux à l’oreille. Le son est une vibration qui se propage de proche en proche dans l’air, de l’émetteur (l’instrument) au récepteur (le tympan). Il est possible de visualiser les sons produits par les instruments et d’en faire l’analyse.

On distingue deux types de sons : les sons purs et les sons composés.

a. Les sons purs, l'exemple du diapason

Le diapason est un instrument produisant une seule note. Le son produit est utilisé comme note de référence pour accorder tous les instruments. Cette note est le la 440.

Visualisation du son produit par un diapason

Afin de visualiser le son produit, on utilise un microphone relié à un boitier d’acquisition des données.

D’abord, le microphone transforme le signal sonore émis par le diapason en un signal électrique. Ce signal électrique est transmis au boitier d’acquisition.

Ensuite, le boitier d’acquisition transforme le signal électrique en un signal numérique. Le signal numérique est traité par un logiciel qui permet de visualiser l’amplitude du son en fonction du temps.

Dispositif expérimental permettant de visualiser l’amplitude d’un son

On réalise l’enregistrement de l’amplitude du son en fixant la durée d’enregistrement ainsi que le nombre de points d’acquisition sur cette durée. Le nombre de points d’acquisition correspond au nombre de mesures effectuées pendant la durée d’acquisition.

Enregistrement de l’évolution de l’amplitude sonore en fonction du temps
La courbe obtenue est une sinusoïde, caractéristique des sons purs. Un son est pur si son évolution temporelle est une sinusoïde.

Le son émis par le diapason est donc un son pur.

Détermination de la période du son produit par un diapason

La sinusoïde est une courbe qui se répète identique à elle-même à des intervalles de temps égaux. Chaque intervalle est appelé période temporelle T.

Le son émis par le diapason est donc périodique.

Méthodes

Pour déterminer graphiquement la période T, il y a deux méthodes. On peut :

  • soit mesurer directement celle-ci sur la courbe enregistrée ;
  • soit mesurer un intervalle de temps correspondant à N périodes puis diviser cette durée par N pour trouver la période T. Cette seconde méthode permet d’obtenir une mesure plus précise.
Exemple
Sur l’enregistrement précédent, on mesure la durée correspondant à cinq périodes. On obtient : = 11,36 ms.
On calcule alors la période T : T = = 2,272 ms.
Détermination de la fréquence du son produit par un diapason

Par définition, la fréquence f est égale au nombre de périodes temporelles T contenues dans une seconde. Son unité est le hertz (Hz). Sa formule est la suivante :

f est en hertz (Hz) et T est en seconde (s).

Remarque
On utilise parfois les multiples du hertz ou les sous-multiples de la seconde.
  • kilohertz : 1 kHz = 103 Hz ;
  • mégahertz : 1 MHz = 106 Hz ;
  • gigahertz : 1 GHz = 109 Hz ;
  • milliseconde : 1 ms = 10-3 s ;
  • microseconde : 1 s = 10-6 s ;
  • nanoseconde : 1 ns = 10-9 s.
Exemple
Pour l’enregistrement précédent, on convertit la période T en seconde puis on calcule la fréquence f.
On obtient : T = 2,272 ms = 2,272 10-3 s.
On calcule alors la fréquence f :

Le la 440 fait référence en fait à la valeur en hertz de la fréquence du son émis par le diapason.
b. Les sons composés, l'exemple de la flute à bec

Une flute est un instrument de musique à vent très répandu et que l’on peut trouver sous différentes forme : flute à bec, flute traversière, flute de Pan...

Visualisation du son produit par une flute à bec

On visualise le son émis par une flute à bec avec le même dispositif expérimental que celui utilisé pour le diapason.

Enregistrement de l’évolution de l’amplitude sonore en fonction du temps

On constate que ce son est périodique car la courbe se reproduit identique à elle-même à des intervalles de temps réguliers.

Détermination de la période et de la fréquence du son produit par une flute à bec

On mesure la durée correspondant à cinq périodes. On obtient : = 15,0 ms. On calcule alors la période T : T = = 3,00 ms.

On convertit la période T en seconde puis on calcule la fréquence f.

On obtient : T = 3,00 ms = 3,00 10-3 s. On calcule alors la fréquence f :

Analyse du son produit par une flute à bec

On constate que la courbe n’est pas une sinusoïde, ce son n’est donc pas un son pur.

On montre que ce son résulte de la superposition de plusieurs sinusoïdes en réalisant le spectre en fréquence de celui-ci. Le spectre en fréquence correspond à un diagramme où sont indiquées en abscisse les fréquences des sons sinusoïdaux qui composent le son et en ordonnée les amplitudes associées à chaque son sinusoïdal.

On obtient ce spectre par une analyse mathématique de la courbe de l’amplitude sonore en fonction du temps, fournie par le logiciel de traitement des données.

Spectre en fréquence du son émis par une flute à bec

Sur le diagramme ci-dessus, chaque barre du spectre correspond à la fréquence d'une des sinusoïdes composant le son.

On constate que le son est composé de quatre sinusoïdes dont les fréquences sont toutes multiples de la première sinusoïde en partant de la gauche. La première des fréquences est égale à la fréquence f calculée du son :
666 Hz = 2 × 333 Hz ; 999 Hz = 3 × 333 Hz ; 1332 Hz = 4 × 333 Hz ;

Sur un spectre en fréquence, la première des fréquences en partant de la gauche est appelée fréquence fondamentale. Les autres sont les harmoniques.
Les harmoniques sont proportionnelles à la fréquence fondamentale.
Un son composé de fréquence f est la somme de plusieurs sons sinusoïdaux dont les fréquences sont des multiples de f.

Le son émis par la flute est donc un son composé.

c. La fabrication d'un son composé

Des logiciels permettent de fabriquer un son composé. Un son composé de fréquence f est synthétisé en superposant (c’est à dire en additionnant) des sons purs de fréquences f, 2f, 3f… Les fréquences des sons purs additionnés sont proportionnelles à la fréquence f.

Illustration de la synthèse d’un son composé de fréquence f
2. L'intensité sonore et le niveau sonore

Un son transporte de l’énergie. Pour caractériser cette énergie déposée par unité de temps et de surface sur un récepteur, on définit l’intensité sonore. La sensation auditive d’un son est caractérisée par le niveau d’intensité sonore.

a. L'intensité sonore
  • La puissance sonore P associée à un son est égale à l’énergie sonore déposée chaque seconde sur une surface S. Cette surface peut-être celle d’un microphone ou d’un tympan par exemple. Cette puissance a pour unité le watt (W).
Illustration de la puissance sonore déposée sur la surface d’un récepteur sonore
L’intensité sonore I est égale au rapport de la puissance sonore P (en watt) sur la surface S (en mètre carré) : il s’agit donc de la puissance sonore par unité de surface en watt par mètre carré (W.m2).
  • Cette grandeur permet de comparer des sons différents. Plus un son est perçu comme fort, plus son intensité sonore est forte.
  • On définit I0 comme la valeur de l’intensité sonore associée au seuil d’audibilité, qui est la valeur de l’intensité sonore en dessous de laquelle un son n’est plus audible par l’oreille : 
    I0 = 1,0 × 1012 W.m2
  • On considère un même son enregistré par trois microphones différents placés à la même distance de la source sonore. On donne pour chacun, la puissance sonore déposée et la surface sensible du microphone. 
  Micro 1 Micro 2 Micro 3
P (W) 8,0 × 106 4,0 × 106 1,6 × 105
S (m2) 4,0 × 104 2,0 × 104 8,0 × 104
  • On calcule l’intensité sonore associée :
  Micro 1 Micro 2 Micro 3
I (W.m2) 2,0 × 102 2,0 × 102 2,0 × 102

L’intensité sonore est la même pour chacun des microphones.

  • On considère un même son enregistré par un même microphone placé à des distances différentes de la source sonore. On donne pour chaque cas, la puissance sonore déposée et la distance du micro. La surface sensible du microphone est égale à 4,0 × 104 mètre carré.
  Micro à d1 Micro à d2 Micro à d3
P (W) 8,0 × 106 2,0 × 106 8,0 × 108
d (m) 1,0 2,0 10,0

On calcule l’intensité sonore associée :

  Micro à d1 Micro à d2 Micro à d3
I (W.m2) 8,0 × 106 1,0 × 106 8,0 × 109

L’intensité sonore est une fonction décroissante de la distance à la source sonore.

  • Un microphone enregistre le son d’un instrument puis celui d’un second et enfin, enregistre le son produit par les deux instruments en même temps. La surface sensible du microphone est égale à 3,0 × 104 mètre carré. On donne la puissance sonore déposée.
  Instrument 1 Instrument 2 Instruments 1 et 2
P (W) 9,0 × 106 3,0 × 106 1,2 × 105

On calcule l’intensité sonore associée :

  Instrument 1 Instrument 2 Instruments 1 et 2
I (W.m-2) 3,0 × 102 1,0 × 102 4,0 × 102

L’intensité sonore des deux instruments ensemble est égale à la somme des intensités sonores des deux instruments pris séparément.

b. Le niveau d'intensité sonore
  • L’intensité sonore peut varier sur une très grande amplitude, de 1,0 × 10-12 W.m-2 qui correspond à la valeur limite du seuil d’audibilité d’un son, jusqu’à 10 W.m-2 qui correspond à la valeur du seuil de la douleur auditive d’un son.
  • On définit alors une grandeur plus facile à manipuler, le niveau d’intensité sonore qui est défini par la relation suivante :

    I est l’intensité sonore et I0 le seuil d’audibilité.
Le niveau d’intensité sonore a pour unité le décibel (dB). La fonction « log », appelée logarithme, est accessible sur toutes les calculatrices. I0 est la valeur de l’intensité sonore associée au seuil d’audibilité.

L’intensité sonore variant sur une très grande plage de valeurs (de 10-12 à 104 W.m-2 environ), l’intérêt du niveau d’intensité sonore est de pouvoir ramener les valeurs sur un intervalle plus petit et donc plus facile à manipuler. 

(W.m-2) 10-12 W.m-2 10-5 W.m-2 10 W.m-2 104 W.m-2
(dB) 0 70 130 160
  •  L’échelle du bruit relie l’intensité sonore et le niveau d’intensité sonore.
Échelle du bruit
  • On peut calculer l’intensité sonore I associée à un niveau d’intensité sonore L en appliquant la formule suivante :

3. L'étude des instruments à cordes et à vent

Le son d’un instrument de musique peut être produit par la vibration d’une corde (instruments à cordes) ou d’une colonne d’air (instruments à vent).

a. La guitare
  • Un guitariste doit placer ses doigts sur ou entre les frettes disposées le long du manche de la guitare afin de jouer différentes notes. Faire glisser son doigt le long du manche permet de faire varier la longueur de la corde.

  • On détermine pour une corde donnée, la fréquence fondamentale du son produit en fonction de la longueur de la corde.
Variation de la fréquence de la note jouée en fonction de la longueur de la corde
On constate que la fréquence est une fonction décroissante de la longueur de la corde : plus la corde est longue, et plus la fréquence de la note est basse.
Remarque
Plus la fréquence de la note est basse et plus la note jouée est grave.
  • La tension de la corde joue un rôle.
Plus la tension de la corde est grande, pour une longueur de corde fixée, et plus la fréquence de la note jouée est élevée.
  • La masse linéique de la corde joue un rôle.
La masse linéique de la corde est égale à la masse de celle-ci par unité de longueur. Elle a pour unité le gramme par centimètre (g.cm-1).
Plus la masse linéique de la corde est grande, pour une longueur de corde fixée, et plus la fréquence de la note jouée est basse.
b. La flute
  • Un flutiste doit placer ses doigts sur les trous disposés le long du corps de la flute afin de jouer différentes notes. On peut faire varier la longueur de la colonne d’air à l’intérieur de l’instrument.

  • La longueur de la colonne d’air joue un rôle : plus la colonne d’air est longue et plus le son produit possède une fréquence basse (le son est alors plus grave).

Évalue ce cours !

 

Des quiz et exercices pour mieux assimiler sa leçon

La plateforme de soutien scolaire en ligne myMaxicours propose des quiz et exercices en accompagnement de chaque fiche de cours. Les exercices permettent de vérifier si la leçon est bien comprise ou s’il reste encore des notions à revoir.

S’abonner

 

Des exercices variés pour ne pas s’ennuyer

Les exercices se déclinent sous toutes leurs formes sur myMaxicours ! Selon la matière et la classe étudiées, retrouvez des dictées, des mots à relier ou encore des phrases à compléter, mais aussi des textes à trous et bien d’autres formats !

Dans les classes de primaire, l’accent est mis sur des exercices illustrés très ludiques pour motiver les plus jeunes.

S’abonner

 

Des quiz pour une évaluation en direct

Les quiz et exercices permettent d’avoir un retour immédiat sur la bonne compréhension du cours. Une fois toutes les réponses communiquées, le résultat s’affiche à l’écran et permet à l’élève de se situer immédiatement.

myMaxicours offre des solutions efficaces de révision grâce aux fiches de cours et aux exercices associés. L’élève se rassure pour le prochain examen en testant ses connaissances au préalable.

S’abonner

Des vidéos et des podcasts pour apprendre différemment

Certains élèves ont une mémoire visuelle quand d’autres ont plutôt une mémoire auditive. myMaxicours s’adapte à tous les enfants et adolescents pour leur proposer un apprentissage serein et efficace.

Découvrez de nombreuses vidéos et podcasts en complément des fiches de cours et des exercices pour une année scolaire au top !

S’abonner

 

Des podcasts pour les révisions

La plateforme de soutien scolaire en ligne myMaxicours propose des podcasts de révision pour toutes les classes à examen : troisième, première et terminale.

Les ados peuvent écouter les différents cours afin de mieux les mémoriser en préparation de leurs examens. Des fiches de cours de différentes matières sont disponibles en podcasts ainsi qu’une préparation au grand oral avec de nombreux conseils pratiques.

S’abonner

 

Des vidéos de cours pour comprendre en image

Des vidéos de cours illustrent les notions principales à retenir et complètent les fiches de cours. De quoi réviser sa prochaine évaluation ou son prochain examen en toute confiance !

S’abonner

Découvrez le soutien scolaire en ligne avec myMaxicours

Plongez dans l'univers de myMaxicours et découvrez une approche innovante du soutien scolaire en ligne, conçue pour captiver et éduquer les élèves de CP à la terminale. Notre plateforme se distingue par une riche sélection de contenus interactifs et ludiques, élaborés pour stimuler la concentration et la motivation à travers des parcours d'apprentissage adaptés à chaque tranche d'âge. Chez myMaxicours, nous croyons en une éducation où chaque élève trouve sa place, progresse à son rythme et développe sa confiance en soi dans un environnement bienveillant.

Profitez d'un accès direct à nos Profs en ligne pour une assistance personnalisée, ou explorez nos exercices et corrigés pour renforcer vos connaissances. Notre assistance scolaire en ligne est conçue pour vous accompagner à chaque étape de votre parcours éducatif, tandis que nos vidéos et fiches de cours offrent des explications claires et concises sur une multitude de sujets. Avec myMaxicours, avancez sereinement sur le chemin de la réussite scolaire, armé des meilleurs outils et du soutien de professionnels dédiés à votre épanouissement académique.

Fiches de cours les plus recherchées

Sciences

Le son, une information à coder

Sciences

Le rayonnement solaire

Sciences

Une conversion naturelle de l'énergie solaire : la photosynthèse

Sciences

Le bilan thermique du corps humain

Sciences

Entendre la musique

Sciences

Le bilan radiatif terrestre

Sciences

La forme de la Terre

Sciences

Formation des images sur la rétine - Nécessité de l'accommodation

Sciences

Biologie des microorganismes et conservation des aliments

Sciences

Qualité des sols et de l'eau

Sciences

Pratiques alimentaires, collectives et perspectives globales

Sciences

Se nourrir au quotidien : exemple des émulsions

Sciences

Conditions de visibilité d'un objet

Sciences

Lentilles minces convergentes et divergentes

Sciences

Couleur et Art

Sciences

Les perturbations chimiques de la perception visuelle

Sciences

Comportements sexuels