Fiche de cours

Fonction dérivée, dérivées usuelles et opérations

Lycée   >   Premiere   >   Mathématiques   >   Fonction dérivée, dérivées usuelles et opérations

  • Fiche de cours
  • Quiz et exercices
  • Vidéos et podcasts
1. Fonction dérivée
Soit f une fonction définie sur un intervalle I.
Dire que f est dérivable sur I signifie que f est dérivable en tout réel a de I.
Autrement dit, f ' (a) existe pour tout a de I.
Dans ce cas, on peut considérer f' la fonction qui à tout réel x de I lui associe son nombre dérivé f '(x).

La fonction f ' est appelée dérivée (première) de f sur I.

Exemple :

Soit f (x) = x2 . Plaçons nous en un réel a quelconque.

Pour h ≠ 0,

Pour tout réel a, ce qui prouve que la fonction est dérivable sur et pour tout a, f ' (a) = 2a.
On emploie plutôt la variable x pour l'expression d'une fonction,
c'est pourquoi on écrira plutôt f '(x) = 2x.
2. Dérivée des fonctions usuelles
De la même façon que ci-dessus, on détermine l'expression des dérivées des fonctions usuelles que l'on consigne dans le tableau suivant :

f(x)
définie pour
x appartenant à
f '(x)
définie pour
x appartenant à
k constante réelle 0
x 1
xn où n entier naturel,

Remarques :

• La dérivabilité s'effectuant sur un intervalle, on dira que la fonction est dérivable sur et sur et non sur (qui n'est pas un intervalle mais une réunion).
• La fonction racine carrée n'est pas dérivable en 0.
3. Opérations sur les fonctions dérivables
Soient u et v, deux fonctions dérivables sur un même intervalle I.

opération dérivée
valable pour
tout x de
u + v u ' + v ' I
k × u (k constante) ku ' I
u × v u ' v + uv ' I
u2 2u'u I
v non nulle sur I I
v non nulle sur I I

4. Exemples d'utilisation
a. Premier exemple
Soit f (x) = 3x3 – 2x + 1 sur .

f est la somme de fonctions dérivables sur donc f est dérivable sur .

f '(x) = (3x3)' + (–2x)' + (1)' car (u + v)' = u' + v'
       = 3(x3)' – 2(x)' car (ku)' = ku'
       = 3 × 3x2 – 2 car (xn)' = nxn–1 pour n = 3

Ainsi, f '(x) = 9x2 – 2 pour tout x réel.
b. Second exemple
Soit sur .

g est la somme de fonctions dérivables sur donc g est dérivable sur .

car



Ainsi, pour tout .
c. Troisième exemple
Soit sur .

Comme est dérivable sur et non nulle sur , alors h est dérivable sur .

car

     

Ainsi, pour tout x réel.
d. Quatrième exemple
Soit sur .

i est le quotient de 2 fonctions dérivables avec x + 2 ≠ 0 sur donc i est dérivable sur .

car





Ainsi, pour tout x de .
e. Cinquième exemple
Soit sur .

Que vaut le nombre dérivé de j en I ?

• Dans un premier temps, on calcule j '(x).

Sur l'intervalle , est dérivable et non nulle donc j est dérivable sur
et .

• On remplace x par 1 dans j ' (x) et on obtient j ' (1) = 2.

Il n’est donc plus nécessaire de calculer le taux d’accroissement et de déterminer sa limite.

Évalue ce cours !

 

Des quiz et exercices pour mieux assimiler sa leçon

La plateforme de soutien scolaire en ligne myMaxicours propose des quiz et exercices en accompagnement de chaque fiche de cours. Les exercices permettent de vérifier si la leçon est bien comprise ou s’il reste encore des notions à revoir.

S’abonner

 

Des exercices variés pour ne pas s’ennuyer

Les exercices se déclinent sous toutes leurs formes sur myMaxicours ! Selon la matière et la classe étudiées, retrouvez des dictées, des mots à relier ou encore des phrases à compléter, mais aussi des textes à trous et bien d’autres formats !

Dans les classes de primaire, l’accent est mis sur des exercices illustrés très ludiques pour motiver les plus jeunes.

S’abonner

 

Des quiz pour une évaluation en direct

Les quiz et exercices permettent d’avoir un retour immédiat sur la bonne compréhension du cours. Une fois toutes les réponses communiquées, le résultat s’affiche à l’écran et permet à l’élève de se situer immédiatement.

myMaxicours offre des solutions efficaces de révision grâce aux fiches de cours et aux exercices associés. L’élève se rassure pour le prochain examen en testant ses connaissances au préalable.

S’abonner

Des vidéos et des podcasts pour apprendre différemment

Certains élèves ont une mémoire visuelle quand d’autres ont plutôt une mémoire auditive. myMaxicours s’adapte à tous les enfants et adolescents pour leur proposer un apprentissage serein et efficace.

Découvrez de nombreuses vidéos et podcasts en complément des fiches de cours et des exercices pour une année scolaire au top !

S’abonner

 

Des podcasts pour les révisions

La plateforme de soutien scolaire en ligne myMaxicours propose des podcasts de révision pour toutes les classes à examen : troisième, première et terminale.

Les ados peuvent écouter les différents cours afin de mieux les mémoriser en préparation de leurs examens. Des fiches de cours de différentes matières sont disponibles en podcasts ainsi qu’une préparation au grand oral avec de nombreux conseils pratiques.

S’abonner

 

Des vidéos de cours pour comprendre en image

Des vidéos de cours illustrent les notions principales à retenir et complètent les fiches de cours. De quoi réviser sa prochaine évaluation ou son prochain examen en toute confiance !

S’abonner

Découvrez le soutien scolaire en ligne avec myMaxicours

Plongez dans l'univers de myMaxicours et découvrez une approche innovante du soutien scolaire en ligne, conçue pour captiver et éduquer les élèves de CP à la terminale. Notre plateforme se distingue par une riche sélection de contenus interactifs et ludiques, élaborés pour stimuler la concentration et la motivation à travers des parcours d'apprentissage adaptés à chaque tranche d'âge. Chez myMaxicours, nous croyons en une éducation où chaque élève trouve sa place, progresse à son rythme et développe sa confiance en soi dans un environnement bienveillant.

Profitez d'un accès direct à nos Profs en ligne pour une assistance personnalisée, ou explorez nos exercices et corrigés pour renforcer vos connaissances. Notre assistance scolaire en ligne est conçue pour vous accompagner à chaque étape de votre parcours éducatif, tandis que nos vidéos et fiches de cours offrent des explications claires et concises sur une multitude de sujets. Avec myMaxicours, avancez sereinement sur le chemin de la réussite scolaire, armé des meilleurs outils et du soutien de professionnels dédiés à votre épanouissement académique.

Fiches de cours les plus recherchées

Mathématiques

Applications de la dérivation

Mathématiques

Mode de génération d'une suite

Mathématiques

Les vecteurs colinéaires et expression d'un vecteur en fonction de 2 vecteurs non colinéaires

Mathématiques

Vecteur directeur d'une droite, équation cartésienne de droite

Mathématiques

Cercle trigonométrique- radian

Mathématiques

Mesures d'un angle orienté et mesure principale

Mathématiques

Cosinus et sinus d'un angle orienté

Mathématiques

Le produit scalaire

Mathématiques

Application aux équations de cercles et de droites

Mathématiques

Statistique descriptive, analyse de données