Fiche de cours

Factoriser : quelle méthode choisir ?

Lycée   >   Premiere   >   Mathématiques   >   Factoriser : quelle méthode choisir ?

  • Fiche de cours
  • Quiz et exercices
  • Vidéos et podcasts
Objectifs
  • Factoriser grâce au discriminant.
  • Factoriser avec des identités remarquables.
  • Factoriser avec la somme et le produit des racines.
  • Factoriser à l'aide d'une racine évidente.
  • Factoriser par complétion du carré.
Points clés
  • Une racine d’un polynôme est une valeur de  qui annule le polynôme.
  • Pour factoriser un polynôme, on a besoin de connaitre les valeurs de ses racines.
  • Si le coefficient  du terme en  d'une fonction polynôme est différent de 1, on factorise par  pour se ramener à une fonction polynôme plus simple à factoriser.
  • Pour trouver la méthode de factorisation adéquate, on les teste une par une dans un ordre donné.
Pour bien comprendre
  • Identités remarquables de collège
  • Équation du premier degré
  • Somme et produit des racines
  • Fonction polynôme de degré deux

Factoriser un polynôme du second degré consiste à l’écrire sous la forme d’un produit de polynôme du premier degré.
Ce n’est possible que si la fonction polynôme possède 1 ou 2 racines.

1. La méthode universelle - via le discriminant

Le discriminant d'une fonction polynôme d’expression est un nombre noté  et qui vaut : .

Calculer ce nombre permet de savoir si  a 0, 1 ou 2 racines, et d'exprimer ces racines en fonction de , et .

0 racine 1 racine (double)
2 racines (distinctes)
et 
Pas de factorisation pour 

Lorsqu'une fonction  polynôme de degré deux définie par possède 1 ou 2 racines, on peut toujours la factoriser en utilisant les formules générales données par le discriminant .

Méthode

Pour factoriser une fonction polynôme  de degré deux donnée par , on calcule , puis la ou les racines, et on écrit la forme factorisée obtenue (si ) en n'oubliant pas le coefficient  dans celle-ci.

Exemple
Si , et , et . Ainsi ou .
Remarque
Il est parfois plus rapide, selon les valeurs de , et  d'éviter de calculer le discriminant en essayant d'employer l'une des méthodes suivantes.
2. Méthodes alternatives

On teste si les méthodes suivantes sont applicables, dans cet ordre :

a. Facteur commun x

Si , alors et  est un facteur commun évident.

Exemple : Factoriser 
donc

Si , ne peut pas être un facteur commun. On essaye une autre méthode.

b. Identité remarquable
  1. On factorise par  de sorte à obtenir un terme en  de coefficient 1 dans l'expression à factoriser : .
    Pour la suite, on considère que la fonction polynôme à factoriser possède un terme en  de coefficient 1.
  2. On teste si est de la forme d'une des 3 identités remarquables :
    qui se factorise ainsi :  (1)
    qui se factorise ainsi :  (2)
    qui se factorise ainsi :  (3)
    Pour cela, on écrit le terme constant sous la forme du carré d'un nombre , on teste si le coefficient du terme en  vaut , on vérifie que le signe de chaque terme convient et on emploie la formule.
Exemples
 : , donc on peut écrire
 : ici , mais  et non , aucune identité ne s'applique.
 : ici , mais on a –49 et non +49, aucune identité ne s'applique.

Si aucune identité ne s'applique, on essaie d'identifier les racines à travers leur somme et leur produit (voir C) ou on part à la recherche d'une racine évidente (voir D), ou les deux à la fois.

Remarque : la recherche de racine évidente sera indispensable plus tard, pour factoriser une fonction polynôme de degré trois.
c. Somme et produit des racines

Dans les cas où , le polynôme est de la forme , avec  la somme et  le produit des racines.

Pour trouver les racines, on essaie de décomposer le terme constant de la fonction polynôme en produit de 2 nombres, et on calcule la somme de ces 2 nombres en espérant trouver l'opposé du coefficient du terme en .

Si cela correspond, alors les 2 nombres sont les racines cherchées et on peut factoriser.

Exemple :
Ici, 16 = 1 × 16 ; 16 = 2 × 8 ; 16 = 4 × 4. Or, 1 + 16 = 17 et 17 ≠ 10 ; 4 + 4 = 8 et 8 ≠ 10. Mais 2 + 8 = 10 donc 2 et 8 sont les racines cherchées et .
d. Racine évidente

Pour chercher une racine évidente, on calcule l'image d'entiers simples proches de 0, comme 0, 1, 2, 3 puis –1 ou –2 ou –3 en espérant que cette image soit 0 et que le nombre testé soit ainsi une racine évidente de la fonction polynôme.

Cette racine évidente peut aussi se lire sur la courbe représentative de la fonction polynôme.

On trouve la deuxième racine en exploitant la règle sur la somme et le produit des racines, ou bien par identification des coefficients :

Exemple :
Ici on voit facilement que 1 est une racine évidente :
.
On note la deuxième racine, on sait que .
On développe à droite pour obtenir et on identifie  à l'aide du terme constant : (ou bien à l'aide du terme en  : donc ).
e. Par complétion du carré

Cette méthode est moins astucieuse que les précédentes, mais permet d'obtenir une factorisation même si on a oublié les formules du discriminant !

On commence par voir les termes en  et en  comme le début d'une identité remarquable :

  • L'identité qui se factorise ainsi : . On peut écrire : , puis on termine la factorisation à l'aide de l'identité remarquable (1).
  • L’identité qui se factorise ainsi : . On peut écrire : , puis on termine la factorisation à l'aide de l'identité remarquable (1).
Exemple
n'a pas la forme d'une identité remarquable, ne possède pas de racine évidente.
On écrit donc puis . On ajoute –20 de chaque côté : et comme on a .
On applique l'identité remarquable (1) : .

Évalue ce cours !

 

Des quiz et exercices pour mieux assimiler sa leçon

La plateforme de soutien scolaire en ligne myMaxicours propose des quiz et exercices en accompagnement de chaque fiche de cours. Les exercices permettent de vérifier si la leçon est bien comprise ou s’il reste encore des notions à revoir.

S’abonner

 

Des exercices variés pour ne pas s’ennuyer

Les exercices se déclinent sous toutes leurs formes sur myMaxicours ! Selon la matière et la classe étudiées, retrouvez des dictées, des mots à relier ou encore des phrases à compléter, mais aussi des textes à trous et bien d’autres formats !

Dans les classes de primaire, l’accent est mis sur des exercices illustrés très ludiques pour motiver les plus jeunes.

S’abonner

 

Des quiz pour une évaluation en direct

Les quiz et exercices permettent d’avoir un retour immédiat sur la bonne compréhension du cours. Une fois toutes les réponses communiquées, le résultat s’affiche à l’écran et permet à l’élève de se situer immédiatement.

myMaxicours offre des solutions efficaces de révision grâce aux fiches de cours et aux exercices associés. L’élève se rassure pour le prochain examen en testant ses connaissances au préalable.

S’abonner

Des vidéos et des podcasts pour apprendre différemment

Certains élèves ont une mémoire visuelle quand d’autres ont plutôt une mémoire auditive. myMaxicours s’adapte à tous les enfants et adolescents pour leur proposer un apprentissage serein et efficace.

Découvrez de nombreuses vidéos et podcasts en complément des fiches de cours et des exercices pour une année scolaire au top !

S’abonner

 

Des podcasts pour les révisions

La plateforme de soutien scolaire en ligne myMaxicours propose des podcasts de révision pour toutes les classes à examen : troisième, première et terminale.

Les ados peuvent écouter les différents cours afin de mieux les mémoriser en préparation de leurs examens. Des fiches de cours de différentes matières sont disponibles en podcasts ainsi qu’une préparation au grand oral avec de nombreux conseils pratiques.

S’abonner

 

Des vidéos de cours pour comprendre en image

Des vidéos de cours illustrent les notions principales à retenir et complètent les fiches de cours. De quoi réviser sa prochaine évaluation ou son prochain examen en toute confiance !

S’abonner

Découvrez le soutien scolaire en ligne avec myMaxicours

Plongez dans l'univers de myMaxicours et découvrez une approche innovante du soutien scolaire en ligne, conçue pour captiver et éduquer les élèves de CP à la terminale. Notre plateforme se distingue par une riche sélection de contenus interactifs et ludiques, élaborés pour stimuler la concentration et la motivation à travers des parcours d'apprentissage adaptés à chaque tranche d'âge. Chez myMaxicours, nous croyons en une éducation où chaque élève trouve sa place, progresse à son rythme et développe sa confiance en soi dans un environnement bienveillant.

Profitez d'un accès direct à nos Profs en ligne pour une assistance personnalisée, ou explorez nos exercices et corrigés pour renforcer vos connaissances. Notre assistance scolaire en ligne est conçue pour vous accompagner à chaque étape de votre parcours éducatif, tandis que nos vidéos et fiches de cours offrent des explications claires et concises sur une multitude de sujets. Avec myMaxicours, avancez sereinement sur le chemin de la réussite scolaire, armé des meilleurs outils et du soutien de professionnels dédiés à votre épanouissement académique.

Fiches de cours les plus recherchées

Mathématiques

Factoriser grâce aux racines évidentes- Première- Mathématiques

Mathématiques

Factoriser à l'aide du discriminant

Mathématiques

Utiliser les différentes formes d'un polynôme du second degré

Mathématiques

Étude de la fonction valeur absolue et de sa dérivation

Mathématiques

La fonction exponentielle : définition et propriétés

Mathématiques

La fonction exponentielle : variation et représentation

Mathématiques

La fonction exponentielle et les suites géométriques

Mathématiques

Listes en Python : création et manipulation- Première- Mathématiques

Mathématiques

Les différents raisonnements mathématiques- Première- Mathématiques

Mathématiques

Somme des termes d'une suite arithmétique- Première- Mathématiques