Droite numérique et intervalles
- Fiche de cours
- Quiz et exercices
- Vidéos et podcasts
- Représenter des réels et des intervalles sur une droite numérique.
- Connaitre les différents types d’intervalles.
- Déterminer si un réel appartient ou non à un intervalle.
- Connaitre et manipuler les opérations de réunion et d’intersection d’intervalles.
- Soit (OI) une droite graduée telle que OI =
1.
À tout point M de la droite, on peut associer un unique réel , appelé son abscisse, qui correspond à la valeur de sa graduation sur la droite. Réciproquement, à tout nombre réel est associé un unique point d’une droite graduée. - Un intervalle de est un ensemble de nombres compris entre deux bornes.
- Soient deux intervalles et de .
La réunion des intervalles et est l’ensemble de tous les réels qui appartiennent à au moins l’un des deux intervalles (on dit aussi que ce sont les réels qui appartiennent à ou à ). On note ce nouvel ensemble (on dit « union »). - L’intersection des intervalles et est l’ensemble de tous les réels qui appartiennent aux deux intervalles (on dit aussi que ce sont les réels qui appartiennent à et à ). On note ce nouvel ensemble (on dit « inter »).
- Inégalités ≤ ,<,≥, >
- Repérer des points sur une droite graduée par leur abscisse
Dans le plan muni d’une unité de longueur,
toute droite peut être graduée.
Il suffit pour cela de disposer de deux points distincts
: l’origine O et un point I tel que OI = 1.
Soit (OI) une droite graduée telle que OI = 1.
À tout point M de la droite, on peut associer un unique réel , appelé son abscisse, qui correspond à la valeur de sa graduation sur la droite. Réciproquement, à tout nombre réel est associé un unique point d’une droite graduée.
L’ensemble de toutes les valeurs des abscisses des points de la droite est égal à l’ensemble des réels, noté ℝ.
La droite (OI) est donc associée à un ensemble de nombres et est appelée droite numérique.
- L’ensemble ℝ est ordonné : on peut comparer deux réels entre eux par des inégalités <, ≤, ≥ ou >.
- L’ensemble ℝ ne possède pas de plus grand nombre.
- L’ensemble ℝ ne possède pas de plus petit nombre.
Pour rappeler cette propriété, on écrit aussi l’ensemble ℝ sous la forme d’un « intervalle » .
- Le symbole signifie « infini » ; ce n’est pas un nombre et il ne doit donc pas être utilisé dans des calculs, seulement dans des notations d’intervalles (voir le paragraphe suivant).
- signifie qu’il n’y a pas de plus grand élément dans ℝ.
- signifie qu’il n’y a pas de plus petit élément dans ℝ.
- L’ensemble de tous les nombres compris entre les bornes et On le note .
- L’ensemble de tous les nombres
supérieurs ou égaux à
.
On le note . Les bornes sont et . - L’ensemble de tous les nombres strictement
inférieurs à .
On le note . Les bornes sont et .
Pour indiquer qu’un nombre appartient à un
intervalle, on utilise le symbole
d’appartenance .
On dit aussi que le nombre est un
élément de l’intervalle.
Un nombre qui n’appartient pas à
l’intervalle sera indiqué par la
négation du symbole
précédent.
- mais .
-
mais . Le crochet [ du
côté de 1 indique que le nombre 1
n’appartient pas à
l’intervalle.
Donc mais .
Pour noter les bornes d’un intervalle, on utilise des crochets.
- Le crochet est fermé (tourné vers l’intérieur de l’intervalle) si la borne appartient à l’intervalle.
- Le crochet est ouvert (tourné vers l’extérieur de l’intervalle) si la borne n’appartient pas à l’intervalle.
- Les bornes et sont toujours associées à un crochet ouvert.
Dans le tableau suivant, soient et deux réels tels que
.
, , , sont les bornes possibles
d’un intervalle.
Notation | Traduction avec des inégalités | Traduction et représentation graphique |
Ensemble des réels compris
entre et |
||
Ensemble des réels compris entre
et exclus |
||
Ensemble des réels supérieurs ou
égaux à |
||
Ensemble des réels strictement
inférieurs à |
||
ou |
Ensemble des nombres réels |
Notations
- L’intervalle est aussi noté (se dit « moins »).
- L’intervalle est aussi noté (se dit « moins étoile »).
- L’intervalle est aussi noté (se dit « plus »).
- L’intervalle est aussi noté (se dit « plus étoile »).
- L’ensemble des réels non nuls est noté (se dit « étoile »). Ce n’est pas un intervalle, car il y a un trou en 0.
À partir de deux intervalles, on peut créer d’autres ensembles, à l’aide de deux opérations : la réunion (aussi appelée « union ») et l’intersection.
Soient deux intervalles et de .
- Dans la réunion, on trouve aussi, s’ils existent, les réels qui appartiennent aux deux intervalles.
- est une réunion d’intervalles : .
- Deux intervalles peuvent n’avoir aucun élément commun. Alors l’intersection est l’ensemble-vide . On dit aussi que les intervalles sont disjoints.
Soient les intervalles et .
- Alors les réels qui appartiennent à
au moins un des deux intervalles sont tous les
réels de . Donc .
Sur la droite numérique ci-dessus, ce sont les réels coloriés dans au moins une couleur. - Par ailleurs, les réels qui appartiennent
aux deux intervalles sont tous les réels de
. Donc .
Sur la droite numérique ci-dessus, ce sont les réels coloriés des deux couleurs.
Soient les intervalles et .
Ces deux intervalles n’ont aucun nombre en commun. Donc .
Comme ces deux intervalles sont disjoints, on ne peut pas simplifier l’écriture de leur réunion et on écrit donc : ou encore .
Des quiz et exercices pour mieux assimiler sa leçon
La plateforme de soutien scolaire en ligne myMaxicours propose des quiz et exercices en accompagnement de chaque fiche de cours. Les exercices permettent de vérifier si la leçon est bien comprise ou s’il reste encore des notions à revoir.
Des exercices variés pour ne pas s’ennuyer
Les exercices se déclinent sous toutes leurs formes sur myMaxicours ! Selon la matière et la classe étudiées, retrouvez des dictées, des mots à relier ou encore des phrases à compléter, mais aussi des textes à trous et bien d’autres formats !
Dans les classes de primaire, l’accent est mis sur des exercices illustrés très ludiques pour motiver les plus jeunes.
Des quiz pour une évaluation en direct
Les quiz et exercices permettent d’avoir un retour immédiat sur la bonne compréhension du cours. Une fois toutes les réponses communiquées, le résultat s’affiche à l’écran et permet à l’élève de se situer immédiatement.
myMaxicours offre des solutions efficaces de révision grâce aux fiches de cours et aux exercices associés. L’élève se rassure pour le prochain examen en testant ses connaissances au préalable.
Des vidéos et des podcasts pour apprendre différemment
Certains élèves ont une mémoire visuelle quand d’autres ont plutôt une mémoire auditive. myMaxicours s’adapte à tous les enfants et adolescents pour leur proposer un apprentissage serein et efficace.
Découvrez de nombreuses vidéos et podcasts en complément des fiches de cours et des exercices pour une année scolaire au top !
Des podcasts pour les révisions
La plateforme de soutien scolaire en ligne myMaxicours propose des podcasts de révision pour toutes les classes à examen : troisième, première et terminale.
Les ados peuvent écouter les différents cours afin de mieux les mémoriser en préparation de leurs examens. Des fiches de cours de différentes matières sont disponibles en podcasts ainsi qu’une préparation au grand oral avec de nombreux conseils pratiques.
Des vidéos de cours pour comprendre en image
Des vidéos de cours illustrent les notions principales à retenir et complètent les fiches de cours. De quoi réviser sa prochaine évaluation ou son prochain examen en toute confiance !