Fiche de cours

Calculer des moyennes

Lycée   >   Seconde   >   SES   >   Calculer des moyennes

  • Fiche de cours
  • Quiz et exercices
  • Vidéos et podcasts
Objectif
  • Comprendre l'outil statistique : la moyenne.
Points clés
  • Il est utilisé généralement deux types de moyenne : la moyenne simple et la moyenne pondérée.
  • La moyenne simple, ou arithmétique, donne la même importance aux valeurs et peut induire un résultat qui ne correspond pas à la réalité. La moyenne pondérée elle prend en compte la différence de poids des valeurs.

La moyenne est un outil statistique qui permet à la fois de résumer des informations et de rendre plus facile des comparaisons dans l'espace et dans le temps. Elle est donc très fréquemment utilisée en sciences économiques et sociales. On utilise généralement deux types de moyenne : la moyenne simple et la moyenne pondérée.

1. La moyenne simple

La moyenne simple, également appelée moyenne arithmétique, d'une série statistique consiste à effectuer la somme des valeurs prises par une variable et à la diviser par le nombre de valeurs étudiées, soit :
(x1 + x2 + x3 + ... + xn) / n.

On parle de moyenne arithmétique simple car chaque variable observée a le même « poids » dans le calcul. La moyenne s'exprime dans la même unité que les variables observées.

Exemple
Considérons des notes obtenues par deux élèves lors de différents contrôles :
 Élèves  Contrôle 1  Contrôle 2 Contrôle 3   Contrôle 4
 Élève A  5/20  10/20  13/20  8/20
 Élève B  5/20  18/20  16/20  7/20
    
Pour l'élève A, la moyenne sur les quatre contrôles est de:
(5+10+13+8) / 4 = 9 / 20.
Pour l'élève B, la moyenne sur les quatre contrôles est de :
(5+18+16+7) / 4 = 11,5 / 20.


Cette moyenne simple pose plusieurs problèmes : 

• en tant que moyenne, elle peut masquer, ici pour l'élève B, d'importants écarts à la moyenne (c'est la « dispersion »). Cette dispersion peut être mesurée par l'écart-type qui permet ainsi de savoir si la moyenne est une valeur significative ou pas. En effet, plus la dispersion est forte, moins la moyenne est significative et inversement. L'écart-type se calcule en prenant la racine carrée de la moyenne des carrés des écarts à la moyenne,
 
• en tant que moyenne simple, elle conduit à donner la même importance à toutes les valeurs de la variable, ce qui ne correspond pas forcement à la réalité. C'est ce qui explique le calcul de la moyenne pondérée.
2. La moyenne pondérée

On utilise la moyenne pondérée quand il faut tenir compte des poids différents des valeurs observées. Ainsi, la moyenne pondérée m, s'obtient en additionnant les valeurs x liées par un coefficient c, et en divisant par la somme des coefficients, soit :
m = (c1.x1 + c2.x2 + c3.x3 + ... + cn.xn) / c1+ c2+ c3+ cn.

Attention : l'analyse des moyennes pondérées doit être réalisée avec précaution car une variation de la moyenne peut être due à une variation des valeurs ou des pondérations.

Exemple
Dans l'exemple précédent, si l'on considère les contrôles 3 et 4 comme les plus importants, on leur affectera un coefficient 2 et un coefficient 1 seulement pour les contrôles 1 et 2. Les moyennes pondérées des deux élèves deviennent alors :
- élève A : mA = (1.5+1.10+2.13+2.8) / 1+1+2+2 = 9,5
- élève B : mB = (1.5+1.18+2.16+2.7) / 1+1+2+2 = 11,5.

D'une manière générale, quel que soit le type de moyenne effectuée, il convient d'être attentif à trois points :

  • le calcul de la moyenne doit porter sur des grandeurs ayant la même unité :
Exemple
Il est impossible de calculer l'activité moyenne de l'unité de production suivante :
Unités de production   Atelier 1  Atelier 2 Atelier 3 
Volumes de production
par jour
 1 000  500  13/20
Unités de mesure de l'activité    automobiles      moteurs    pots
  d'échappement  

Si l'on veut déterminer cette activité moyenne, il convient de donner à chaque unité de mesure de l'activité un prix (ou un coût). 

  • la moyenne ne correspond pas nécessairement à la situation la plus fréquente : si l'on considère une classe de 30 élèves, dont 15 auraient obtenu 7/20 à un devoir, les autres ayant obtenu 13/20, la note moyenne de la classe est donc 10/20, mais aucun élève n'a obtenu une telle note ; 
  • la moyenne est un résumé ; il y a donc une perte d'information : la moyenne résume des informations et, à ce titre, elle conduit à en perdre. Notamment, la moyenne ne donne aucune information sur la répartition des valeurs observées ni sur la dispersion autour de cette valeur centrale qui est la moyenne.

 

Évalue ce cours !

 

Des quiz et exercices pour mieux assimiler sa leçon

La plateforme de soutien scolaire en ligne myMaxicours propose des quiz et exercices en accompagnement de chaque fiche de cours. Les exercices permettent de vérifier si la leçon est bien comprise ou s’il reste encore des notions à revoir.

S’abonner

 

Des exercices variés pour ne pas s’ennuyer

Les exercices se déclinent sous toutes leurs formes sur myMaxicours ! Selon la matière et la classe étudiées, retrouvez des dictées, des mots à relier ou encore des phrases à compléter, mais aussi des textes à trous et bien d’autres formats !

Dans les classes de primaire, l’accent est mis sur des exercices illustrés très ludiques pour motiver les plus jeunes.

S’abonner

 

Des quiz pour une évaluation en direct

Les quiz et exercices permettent d’avoir un retour immédiat sur la bonne compréhension du cours. Une fois toutes les réponses communiquées, le résultat s’affiche à l’écran et permet à l’élève de se situer immédiatement.

myMaxicours offre des solutions efficaces de révision grâce aux fiches de cours et aux exercices associés. L’élève se rassure pour le prochain examen en testant ses connaissances au préalable.

S’abonner

Des vidéos et des podcasts pour apprendre différemment

Certains élèves ont une mémoire visuelle quand d’autres ont plutôt une mémoire auditive. myMaxicours s’adapte à tous les enfants et adolescents pour leur proposer un apprentissage serein et efficace.

Découvrez de nombreuses vidéos et podcasts en complément des fiches de cours et des exercices pour une année scolaire au top !

S’abonner

 

Des podcasts pour les révisions

La plateforme de soutien scolaire en ligne myMaxicours propose des podcasts de révision pour toutes les classes à examen : troisième, première et terminale.

Les ados peuvent écouter les différents cours afin de mieux les mémoriser en préparation de leurs examens. Des fiches de cours de différentes matières sont disponibles en podcasts ainsi qu’une préparation au grand oral avec de nombreux conseils pratiques.

S’abonner

 

Des vidéos de cours pour comprendre en image

Des vidéos de cours illustrent les notions principales à retenir et complètent les fiches de cours. De quoi réviser sa prochaine évaluation ou son prochain examen en toute confiance !

S’abonner

Découvrez le soutien scolaire en ligne avec myMaxicours

Plongez dans l'univers de myMaxicours et découvrez une approche innovante du soutien scolaire en ligne, conçue pour captiver et éduquer les élèves de CP à la terminale. Notre plateforme se distingue par une riche sélection de contenus interactifs et ludiques, élaborés pour stimuler la concentration et la motivation à travers des parcours d'apprentissage adaptés à chaque tranche d'âge. Chez myMaxicours, nous croyons en une éducation où chaque élève trouve sa place, progresse à son rythme et développe sa confiance en soi dans un environnement bienveillant.

Profitez d'un accès direct à nos Profs en ligne pour une assistance personnalisée, ou explorez nos exercices et corrigés pour renforcer vos connaissances. Notre assistance scolaire en ligne est conçue pour vous accompagner à chaque étape de votre parcours éducatif, tandis que nos vidéos et fiches de cours offrent des explications claires et concises sur une multitude de sujets. Avec myMaxicours, avancez sereinement sur le chemin de la réussite scolaire, armé des meilleurs outils et du soutien de professionnels dédiés à votre épanouissement académique.

Fiches de cours les plus recherchées

SES

Calculer le mode et la médiane

SES

Calculer les indices

EMC

SES

Les administrations : associations, coopératives, mutuelles - Première - EMC

SES

Les ressources : revenus et crédits

SES

La diversité des organisations productives

SES

La démarche des sciences économiques et sociales

SES

La démarche des SES : l'exemple des vacances

SES

L'exemple du tabac : un phénomène économique et social

SES

L'évolution des différentes formes d'emploi

SES

La production de l'État : le secteur public

SES

Produire autrement : associations, coopératives, mutuelles

SES

La recherche de la rentabilité : investissement et progrès technique

SES

La productivité et la rentabilité de l'entreprise