Fiche de cours

Applications de la dérivation

Lycée   >   Premiere   >   Mathématiques   >   Applications de la dérivation

  • Fiche de cours
  • Quiz et exercices
  • Vidéos et podcasts
1. À l'étude du sens de variation d'une fonction
a. Théorème donnant le lien entre le signe de la dérivée et le sens de variation d'une fonction
Soit f une fonction dérivable sur un intervalle I.

Dire que :
f est croissante sur I signifie que pour tout réel x de I.
f est décroissante sur I signifie que pour tout réel x de I.
f est constante sur I signifie que pour tout réel x de I.

Compléments
• Être monotone sur un intervalle I signifie être croissante ou décroissante sur cet intervalle.
• Si f '(x) > 0 (respectivement f '(x) < 0) sur I alors on peut dire que f est strictement croissante (respectivement strictement décroissante) sur l'intervalle I.
b. Comment étudier les variations d'une fonction à l'aide de la dérivée
Exemple
Étudier les variations de la fonction f définie sur par .

La fonction f est dérivable sur en tant que somme de fonctions dérivables et .
Il s'agit maintenant d'étudier le signe de : on reconnaît ici un trinôme de second degré.
Pour ceci, on calcule donc le trinôme admet 2 racines distinctes :





Le trinôme est du signe de a à l'extérieur des racines.
Or a = – 9 < 0 donc on peut résumer ainsi le signe de f ' (x) :



D'après le théorème, on peut dire que
f est décroissante sur et sur
f est croissante sur .

En général, on récapitule les variations dans un tableau, comme en seconde, en ajoutant une ligne supplémentaire : celle qui donne le signe de f '(x).


2. À la recherche d'extremum (minimum ou maximum) local d'une fonction
a. Maximum ou minimum local d'une fonction
f est une fonction définie sur un intervalle I et x0 un réel de I.
Dire que f admet un maximum (respectivement minimum) local en x0 signifie qu'il existe un intervalle ouvert J contenant x0 tel que f (x0) soit la plus grande valeur (respectivement la plus petite valeur) prise par f (x) sur J.


Dans l'exemple ci-dessus, on considère la fonction f définie sur l'intervalle .

• Considérons l'intervalle ouvert . On peut dire que f(1) est la plus grande valeur prise par f(x) sur J. Ainsi, la fonction f admet un maximum local en x0 = 1.
• De même, considérons l'intervalle ouvert . On peut dire que f(3) est la plus petite valeur prise par f(x) sur J '. Ainsi, la fonction f admet un minimum local en x0 = 3.

Remarque :
L'intervalle J est considéré ouvert de façon à ce que le réel x0 ne soit pas une borne de l'intervalle, autrement dit x0 est à « l'intérieur » de l'intervalle J.
b. Lien entre dérivée et extremum local
Soit f une fonction dérivable sur un intervalle I.
Soit x0 un réel de I, distinct des bornes de I.
Si f ' s'annule en x0 en changeant de signe, alors f admet un extremum local en x0.

Ainsi, 2 cas de figure s'imposent :


f admet un minimum local en x0         

  f admet un maximum local en x0

Réciproque 
Si f admet un extremum local en x alors f '(x0) = 0.
c. Exemple
Déterminer les extrema locaux de la fonction f définie sur par .

La fonction f est dérivable en tant que quotient de fonctions dérivables avec x2 + 1 ≠ 0 sur .



(x2 + 1)2 > 0 donc f '(x) est du signe de 1 – x2.
1 – x2 est un trinôme qui s'annule en –1 et en 1 ; il est du signe de a à l'extérieur des racines.
Ainsi, sur et sur
         sur .

Dressons le tableau de variation de f pour mieux visualiser la nature des extrema de f :



Comme f '(–1) = 0 en changeant de signe, alors f admet un extremum local en –1 qui est en fait un minimum.
Comme f '(1) = 0 en changeant de signe, alors f admet un extremum local en 1 qui est en fait un maximum.

Évalue ce cours !

 

Des quiz et exercices pour mieux assimiler sa leçon

La plateforme de soutien scolaire en ligne myMaxicours propose des quiz et exercices en accompagnement de chaque fiche de cours. Les exercices permettent de vérifier si la leçon est bien comprise ou s’il reste encore des notions à revoir.

S’abonner

 

Des exercices variés pour ne pas s’ennuyer

Les exercices se déclinent sous toutes leurs formes sur myMaxicours ! Selon la matière et la classe étudiées, retrouvez des dictées, des mots à relier ou encore des phrases à compléter, mais aussi des textes à trous et bien d’autres formats !

Dans les classes de primaire, l’accent est mis sur des exercices illustrés très ludiques pour motiver les plus jeunes.

S’abonner

 

Des quiz pour une évaluation en direct

Les quiz et exercices permettent d’avoir un retour immédiat sur la bonne compréhension du cours. Une fois toutes les réponses communiquées, le résultat s’affiche à l’écran et permet à l’élève de se situer immédiatement.

myMaxicours offre des solutions efficaces de révision grâce aux fiches de cours et aux exercices associés. L’élève se rassure pour le prochain examen en testant ses connaissances au préalable.

S’abonner

Des vidéos et des podcasts pour apprendre différemment

Certains élèves ont une mémoire visuelle quand d’autres ont plutôt une mémoire auditive. myMaxicours s’adapte à tous les enfants et adolescents pour leur proposer un apprentissage serein et efficace.

Découvrez de nombreuses vidéos et podcasts en complément des fiches de cours et des exercices pour une année scolaire au top !

S’abonner

 

Des podcasts pour les révisions

La plateforme de soutien scolaire en ligne myMaxicours propose des podcasts de révision pour toutes les classes à examen : troisième, première et terminale.

Les ados peuvent écouter les différents cours afin de mieux les mémoriser en préparation de leurs examens. Des fiches de cours de différentes matières sont disponibles en podcasts ainsi qu’une préparation au grand oral avec de nombreux conseils pratiques.

S’abonner

 

Des vidéos de cours pour comprendre en image

Des vidéos de cours illustrent les notions principales à retenir et complètent les fiches de cours. De quoi réviser sa prochaine évaluation ou son prochain examen en toute confiance !

S’abonner

Découvrez le soutien scolaire en ligne avec myMaxicours

Plongez dans l'univers de myMaxicours et découvrez une approche innovante du soutien scolaire en ligne, conçue pour captiver et éduquer les élèves de CP à la terminale. Notre plateforme se distingue par une riche sélection de contenus interactifs et ludiques, élaborés pour stimuler la concentration et la motivation à travers des parcours d'apprentissage adaptés à chaque tranche d'âge. Chez myMaxicours, nous croyons en une éducation où chaque élève trouve sa place, progresse à son rythme et développe sa confiance en soi dans un environnement bienveillant.

Profitez d'un accès direct à nos Profs en ligne pour une assistance personnalisée, ou explorez nos exercices et corrigés pour renforcer vos connaissances. Notre assistance scolaire en ligne est conçue pour vous accompagner à chaque étape de votre parcours éducatif, tandis que nos vidéos et fiches de cours offrent des explications claires et concises sur une multitude de sujets. Avec myMaxicours, avancez sereinement sur le chemin de la réussite scolaire, armé des meilleurs outils et du soutien de professionnels dédiés à votre épanouissement académique.

Fiches de cours les plus recherchées

Mathématiques

Mode de génération d'une suite

Mathématiques

Les vecteurs colinéaires et expression d'un vecteur en fonction de 2 vecteurs non colinéaires

Mathématiques

Vecteur directeur d'une droite, équation cartésienne de droite

Mathématiques

Cercle trigonométrique- radian

Mathématiques

Mesures d'un angle orienté et mesure principale

Mathématiques

Cosinus et sinus d'un angle orienté

Mathématiques

Le produit scalaire

Mathématiques

Application aux équations de cercles et de droites

Mathématiques

Statistique descriptive, analyse de données

Mathématiques

Variable aléaoire discrète (loi de probabilités et calcul de ses paramètres)